Semisupervised Neural Proto-Language Reconstruction

Liang Lu¹, Peirong Xie², David R. Mortensen¹

¹Carnegie Mellon University, ²University of Southern California lianglu@cs.cmu.edu, louisxie@usc.edu, dmortens@cs.cmu.edu

TL;DR: We introduce the novel task of semisupervised protoform reconstruction. Informed by historical linguists' comparative method, we propose the DPD architecture for this task, which outperforms baseline methods in almost all situations.

The Task Given descendant words (reflexes in a cognate set) of the same ancestral word, reconstruct the ancestral word (protoform). ? 'neighbor' (Latin)				The DPD (Daughter-to-Proto-to-Daughter) Model			
			nate set) of the estral word	 Designed to mimic the comparative method's workflow, which involves checking whether the reflexes are recoverable from the reconstruction Gradients flow from P2D into D2P, allowing the reconstruction sub potwork to learn even in the 			
vwazin	vit∫ina	beθina	viziņe	absence of protoform labels recover the reflexes? proposed by D2P?			
< voisine> (French)	<vicina> (Italian)</vicina>	<vecina></vecina> (Spanish)	<vizinha> (Portuquese)</vizinha>	Actual Predicted Protoform Prediction Protoform Embedding Reflex Inferred			
Example from (Meloni et al., 2021; Ciobanu and Dinu, 2018)			Example from (Meloni et al., 2021; Ciobanu and Dinu, 2018)	$(CE \text{ Loss } L_{D2P}) \longrightarrow (CE \text{ Loss } L_{D2P}) \longrightarrow (CE \text{ Loss } L_{P2D}^{CE, \text{ pred}} \text{ and} (CE \text{ Loss } L_{P2D}^{CE, \text{ pred}} \text{ and} (CE \text{ Loss } L_{P2D}^{CE, \text{ pred}}) \longrightarrow (CE \text{ Loss } L_{P2D}^{gold}) \longrightarrow (CE \text{ Loss } L_{P2D}^{gold}) \longrightarrow (CE \text{ Loss } L_{P2D}^{gold})$			

The Comparative Method

- The regularity principle: sound changes are regular
- Reflexes should be derivable deterministically from reconstructions using a single set of sound change rules
- Laborious for humans to apply in practice for large datasets

Semisupervised Reconstruction

It is likely that historical linguists only have a limited number of protoforms to work with at the early stage of a reconstruction project. In such a scenario, labeled training data is scarce for neural reconstruction models. Unlabeled cognate can be useful to semisupervised reconstruction models if used effectively. Consider the following example drawn from Tangkhulic Languages:

Gloss	'grandchild'	'bone'	'breast'	'laugh'
Kachai	ð 🧧	r e	n e	n i
Huishu	r u k	r u k	n u k	n u k
Ukhrul	r u	r u	n u	n u
Reference Protoform	d u	r u	n u	n i
Labeled?	Yes	Yes	No	No
Model Sees	d u	r u	(hidden)	(hidden)
Supervised Model	d u	r u	nu	n u
DPD	d u	r u	n u	n *

Target prediction (Middle Chinese)

mij³

D2P

Input Sequence ↓ P2D ↓ P2D P2D Target output Target output Target output

meil

mę∤

Where ***** is something other than **u**. Notice that if we try to infer the Kachai reflexes from the reconstructions:

d u →	ð 😢	d u →	ð 🥲
ru —>	r e	r u →	r e
n u →	n e	n u →	n e
nu —	n i	n * 💛	n i

Experiments

Strategies

- Weak baselines: Supervised only (SUPV), Bootstrapping (BST), Π-model (ΠM)
- Strong baseline: Π-model with Bootstrapping (ΠΜ-BST)
- **DPD-based:** Plain DPD (**DPD**), DPD with Bootstrapping (**DPD-BST**), DPD merged with Π-model (**DPD-ΠM**), DPD-ΠM with Bootstrapping (**DPD-ΠM-BST**)

Sub-network Architectures

D2P and P2D both being **GRU** or both being Transformer (Trans)

Datasets

WikiHan (Chang et al., 2022) for Middle Chinese reconstruction, Romance (Meloni et al., 2021; Ciobanu and Dinu, 2018) for Latin reconstruction

Results – Performance when 10% of the Cognate Sets Are Labeled

		WikiHa	n			
Architecture	Strategy	ACC% ↑	TED \downarrow	TER↓	FER↓	BCFS ↑
Transformer	DPD-ПM-BST (ours)	40.50% 8	1.0075 8	0.2360	0.0970 🍪	0.6707 8
	DPD-BST (ours)	39.06% 器	1.0367 8	0.2428	0.0997 🎖	0.6630 8
	DPD-ПМ (ours)	37.72% 8	1.0791 🔮	0.2528	0.1022	0.6472 🔊
	DPD (ours)	39.50% 🎖	1.0356 🍔	0.2426 8	0.0993 🎖	0.6564 🎇
	ПМ-BST	34.21%	1.1489	0.2691	0.1106	0.6371
	BST (Lee, 2013)	34.78%	1.1455	0.2683	0.1109	0.6334
	ΠM (Laine and Aila, 2017)	34.30%	1.1699	0.2740	0.1122	0.6209
	SUPV	33.25%	1.1891	0.2785	0.1140	0.6138
GRU	DPD-ПM-BST (ours)	39.74% 8	1.0280	0.2408	0.0972 🎇	0.6683
	DPD-BST (ours)	35.89% 🔮	1.1025	0.2582	0.1039	0.6493
	DPD-ПМ (ours)	37.90%	1.0697 🔀	0.2506	0.1006	0.6517
	DPD (ours)	34.51% 🗿	1.1538	0.2703	0.1091 34	0.6278
	ПM-BST	34.99% 32	1.1479 🖁	0.2689 🖁	0.1077	0.6354 32
	BST (Lee, 2013)	28.18%	1.3092	0.3067	0.1208	0.5939
	ΠM (Laine and Aila, 2017)	32.59%	1.2047	0.2822	0.1137	0.6166
	SUPV	28.16%	1.3257	0.3105	0.1234	0.5835
		Roman	се			
Architecture	Strategy	ACC%↑	TED \downarrow	TER↓	FER↓	BCFS ↑
Transformer	DPD-ПМ-BST (ours)	34.63% 8	1.3115 🎇	0.1463 🍪	0.0588	0.7850
	DPD-BST (ours)	33.51% 器	1.3605 🔐	0.1517 器	0.0599 🎖	0.7763
	DPD-ПМ (ours)	29.24%	1.5888	0.1772	0.0732	0.7423
	DPD (ours)	31.94% 34	1.5111	0.1685	0.0678 3^{2}	0.7529
	ПM-BST	32.10% 📲	1.4005	0.1562	0.0636	0.7716
	BST (Lee, 2013)	29.95%	1.5066	0.1680	0.0704	0.7555
	ΠM (Laine and Aila, 2017)	26.97%	1.7134	0.1911	0.0796	0.7239
	SUPV	26.99%	1.7331	0.1933	0.0794	0.7218
GRU	DPD-ПМ-BST (ours)	36.78% 🕶	1.2380 8	0.1381 🚼	0.0483 8	0.7980
	DPD-BST (ours)	37.60% 🎖	1.2149	0.1355 8	0.0457 🍪	0.8014 器
	DPD-ПМ (ours)	31.51%	1.4892	0.1661	0.0628	0.7586
	DPD (ours)	31.12%	1.4837	0.1655	0.0608	0.7591
	ПM-BST	35.50%	1.2970	0.1447	0.0531	0.7909 ^①
	BST (Lee, 2013)	35.87%	1.2893	0.1438	0.0509	0.7908
	ΠM (Laine and Aila, 2017)	29.40%	1.5440	0.1722	0.0643	0.7517

Results – Performance vs. Proportion of Labeled Cognate Sets

mei-

Bold: the best-performing model for each metric; ①: significantly better than all weak baselines (SUPV, BST, and TM) on dataset seed 1 with p < 0.01; **0**: significantly better than the ΠM-BST strong baseline and all weak baselines on dataset seed 1 with p < 0.01; 2, 3, 4, 2, 3, 4: likewise for dataset seeds 2-4.

Analysis – Hierarchical Clustering of Phoneme Embedding

Phoneme embeddings learned by DPD-based strategies appear to align more with how phonologists organize phonemes.

