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A 19th-century Discovery

Languages change in systematic ways, and it is possible to reproducibly reconstruct 
proto-languages using these systematic patterns, even when no record of the proto-
language survived. 

Historical linguists use the comparative method to reconstruct proto-languages.

Ancestor language

Descendent language

Systematic changes
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Protoform Reconstruction
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Protoform Reconstruction
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Protoform Reconstruction
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Protoform Reconstruction

Example: Romance Dataset (Meloni et al., 2021; Ciobanu and Dinu, 2018)

wikinam <vicinam> 'neighbor' 
(Latin)

vwazin 
<voisine> 
(French)

vitʃina 
<vicina> 
(Italian)

beθina 
<vecina> 
(Spanish)

viziɲɐ 
<vizinha> 

(Portuguese)
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Protoform Reconstruction

Example: Romance Dataset (Meloni et al., 2021; Ciobanu and Dinu, 2018)
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Protoform Reconstruction

Example: Romance Dataset (Meloni et al., 2021; Ciobanu and Dinu, 2018)

wikinam <vicinam> 'neighbor' 
(Latin) Proto-language

Reflexes in the 
same cognate setvwazin 

<voisine> 
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Protoform Reconstruction

Example: Romance Dataset (Meloni et al., 2021; Ciobanu and Dinu, 2018)

wikinam <vicinam> 'neighbor' 
(Latin) Proto-language

Reflexes in the 
same cognate set

Daughter languages

vwazin 
<voisine> 
(French)

vitʃina 
<vicina> 
(Italian)

beθina 
<vecina> 
(Spanish)

viziɲɐ 
<vizinha> 

(Portuguese)

Protoform
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Protoform Reconstruction

?  'neighbor' 
(Latin)

vwazin 
<voisine> 
(French)

vitʃina 
<vicina> 
(Italian)

beθina 
<vecina> 
(Spanish)

viziɲɐ 
<vizinha> 

(Portuguese)

Example: Romance Dataset (Meloni et al., 2021; Ciobanu and Dinu, 2018)
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Protoform Reconstruction

Input

?  'neighbor' 
(Latin)

vwazin 
<voisine> 
(French)

vitʃina 
<vicina> 
(Italian)

beθina 
<vecina> 
(Spanish)

viziɲɐ 
<vizinha> 

(Portuguese)

Example: Romance Dataset (Meloni et al., 2021; Ciobanu and Dinu, 2018)



6 ACL 2024 Semisupervised Neural Proto-Language Reconstruction 

Protoform Reconstruction

Input

Output ?  'neighbor' 
(Latin)

vwazin 
<voisine> 
(French)

vitʃina 
<vicina> 
(Italian)

beθina 
<vecina> 
(Spanish)

viziɲɐ 
<vizinha> 

(Portuguese)

Example: Romance Dataset (Meloni et al., 2021; Ciobanu and Dinu, 2018)
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The Comparative Method

The regularity principle: 
⯈ Sound changes are regular 

⯈ Reflexes should be derivable deterministically from reconstructions using a single set 
of sound change rules

"Every sound change, in so far as it proceeds mechanically, is completed in accordance with laws 
admitting of no exceptions; i.e. the direction in which the change takes place is always the same 

for all members of a language community, apart from the case of dialect division, and all words in 
which the sound subject to change occurs in the same conditions are affected by the change 

without exception." 

—H. Osthoff and K. Brugmann, Morphologische Untersuchungen auf dem Gebiete der 
indogermanischen Sprachen i, Leipzig, 1878, p. xiii (quoted in Szemerényi (1996))
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The Comparative Method

The regularity principle: 
⯈ Sound changes are regular 

⯈ Reflexes should be derivable deterministically from reconstructions using a single set 
of sound change rules 

The comparative method is challenging to apply in practice, because examining a large 
number of cognate sets and complex combinations of sound changes can impose heavy 
cognitive load. 
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Supervised Neural Reconstruction

⯈ RNN with language embedding (Meloni et al., 2021) 
⯈ Transformer (Kim et al., 2023) 
⯈ VAE (Cui et al., 2022)

Target prediction (Middle Chinese)

Input sequence (concatenated reflexes)

*[Cantonese]:mei̯˨*[Mandarin]:mei̯˥˩*[Wu]:me̞˨˧*

mij³

Sequence-to-sequence model

Note: Other input representations exist, such a stacked representation used by Cognate 
Transformer (Akavarapu and Bhattacharya, 2023)

Shown: the 煝 cognate set from WikiHan
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Supervised Training

Cantonese Gan Hakka Jin Mandarin Hokkien Wu Xiang Label (Gold Protoform)

pʰʊŋ˨˩ pʰuŋ˨˦ pʰuŋ˩ pʰxəŋ̃˩˩ pʰɤŋ˧˥ pʰaŋ˨˦ b̥ʊŋ˨˧ pʊŋ˩˧ buŋʷ¹

mɔː˧˥ mo˦˨ mi̯a˨˦ - mu̯ɔ˥ bɔŋ˥ mʊʔ˩˨ - mak⁴

saːn˧ - - - ʂan˥˩ sũ̯ã˧˩ - - ʂɛn²

kʰɵy̯˥ - - - tɕ͡ʰy˥ kʰi̯ɤʔ˧ - - kʰi¹

siːn˧˥ - ɕi̯en˧˩ - ɕyan˨˩ ɕi̯ɛn˥˩ - - sjen²

lɐu̯˩˧ - li̯u˨˦ li̯əu̯˥˧ li̯oʊ̯˨˩ li̯u˥˩ li̯ɜ˨˧ - ljuw²

mɐn˨ - - - u̯ən˥˩ bun˧ - - mjun³

tʊŋ˧˥ tuŋ˨˩˧ tuŋ˧˩ tũŋ˥˧ tʊŋ˨˩ tɔŋ˥˩ tʊŋ˧˦ tʊŋ˦˩ tuŋʷ²

ts͡ʰɐu̯˨˩ - - - ʈʂ͡ʰoʊ̯˧˥ ɕi̯u˨˦ - - d͡ʑuw¹

jœːŋ˥ - - - i̯ɑŋ˥ i̯ɔŋ˥ - - ʔjaŋ¹

Examples are from WikiHan, '-' indicates missing reflex in the dataset
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A More Realistic Scenario: Semisupervised Reconstruction

Cantonese Gan Hakka Jin Mandarin Hokkien Wu Xiang Label (Gold Protoform)
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A Hypothetical Example

Gloss 'grandchild' 'bone' 'breast' 'laugh'

Labeled? Yes Yes No No

Kachai ð ɐ  r ɐ  n ɐ  n i  

Huishu r u k r u k n u k n u k

Ukhrul r u  r u  n u  n u  

Protoform Label d u  r u  n u  n ɨ  
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A Hypothetical Example

Gloss 'grandchild' 'bone' 'breast' 'laugh'

Labeled? Yes Yes No No

Kachai ð ɐ  r ɐ  n ɐ  n i  

Huishu r u k r u k n u k n u k

Ukhrul r u  r u  n u  n u  

Protoform Label d u  r u  (hidden) (hidden)
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A Hypothetical Example

Gloss 'grandchild' 'bone' 'breast' 'laugh'

Labeled? Yes Yes No No

Kachai ð ɐ  r ɐ  n ɐ  n i  

Huishu r u k r u k n u k n u k

Ukhrul r u  r u  n u  n u  

Protoform Label d u  r u  (hidden) (hidden)

Supervised Model d u  r u  n u  n u  
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A Hypothetical Example

Gloss 'grandchild' 'bone' 'breast' 'laugh'

Labeled? Yes Yes No No

Kachai ð ɐ  r ɐ  n ɐ  n i  

Huishu r u k r u k n u k n u k

Ukhrul r u  r u  n u  n u  

Protoform Label d u  r u  (hidden) (hidden)

Supervised Model d u  r u  n u  n u  

n u  n ɐ  

n i  n u  

r u  r ɐ  

d u  ð ɐ  

Trouble: Cannot 
deterministically 

derive the reflexes!
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A Hypothetical Example

Gloss 'grandchild' 'bone' 'breast' 'laugh'

Labeled? Yes Yes No No

Kachai ð ɐ  r ɐ  n ɐ  n i  

Huishu r u k r u k n u k n u k

Ukhrul r u  r u  n u  n u  

Protoform Label d u  r u  (hidden) (hidden)

Supervised Model d u  r u  n u  n u  

Semisupervised Model d u  r u  n u  

n u  n ɐ  

r u  r ɐ  

d u  ð ɐ  

n u  n ɐ  

n i  n u  

r u  r ɐ  

d u  ð ɐ  
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A Hypothetical Example

Gloss 'grandchild' 'bone' 'breast' 'laugh'

Labeled? Yes Yes No No

Kachai ð ɐ  r ɐ  n ɐ  n i  

Huishu r u k r u k n u k n u k

Ukhrul r u  r u  n u  n u  

Protoform Label d u  r u  (hidden) (hidden)

Supervised Model d u  r u  n u  n u  

Semisupervised Model d u  r u  n u  n ✽  

n u  n ɐ  

n i  n ✽  
Something other 

than u

r u  r ɐ  

d u  ð ɐ  

n u  n ɐ  

n i  n u  

r u  r ɐ  

d u  ð ɐ  
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A Hypothetical Example

Gloss 'grandchild' 'bone' 'breast' 'laugh'

Labeled? Yes Yes No No

Kachai ð ɐ  r ɐ  n ɐ  n i  

Huishu r u k r u k n u k n u k

Ukhrul r u  r u  n u  n u  

Protoform Label d u  r u  n u  n ɨ  

Supervised Model d u  r u  n u  n u  

Semisupervised Model d u  r u  n u  n ✽  

Indeed not u
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A Hypothetical Example

Gloss 'grandchild' 'bone' 'breast' 'laugh'

Labeled? Yes Yes No No

Kachai ð ɐ  r ɐ  n ɐ  n i  

Huishu r u k r u k n u k n u k

Ukhrul r u  r u  n u  n u  

Protoform Label d u  r u  n u  n ɨ  

DPD d u  r u  n u  n ✽  

Reflexes Protoform?
Reconstruction

Reflexes?
Reflex Prediction

Daughter-to-Proto-to-Daughter (DPD)
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Reflex Prediction

Input Sequence

Output Sequence

mei̯˨

[Cantonese]mij³
Input Sequence

Output Sequence

mei̯˥˩

[Mandarin]mij³
Input Sequence

Output Sequence

me̞˨˧

[Wu]mij³



Methods
The DPD Architecture and the Experiments
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The DPD (Dughter-to-Proto-to-Daughter) Architecture



















Incorrect protoform
Correct reflexes derived 

from incorrect protoform





where                are constants
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Weak Baseline Strategies

Supervised only (SUPV): only train the model on the labeled training examples 

Bootstrapping (BST): A form of proxy-labelling in which the model's most confident 
predictions are added as pseudo-labels to the train set (Lee, 2013)  

Π-Model (ΠM): An implementation of consistency regularization by training the model 
to produce similar outputs on stochastically augmented inputs (Laine and Aila, 2017) 

(Laine and Aila, 2017) 
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Implementing Stochastic Augmentation for Π-Model

Drop a daughter language with a 50% probability (unless there is only one)

Randomly reorder the reflexes

Original input sequence

*[Cantonese]:mei̯˨*[Mandarin]:mei̯˥˩*[Wu]:me̞˨˧*

*[Mandarin]:mei̯˥˩*[Cantonese]:mei̯˨*

*[Wu]:me̞˨˧*[Mandarin]:mei̯˥˩*[Cantonese]:mei̯˨*
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Architectures and Training Strategies

1. Supervised only (SUPV) 
2. Bootstrapping (BST) 
3. Π-model (ΠM) 
4. Π-model with Bootstrapping (ΠM-BST) 
5. DPD 
6. DPD with Bootstrapping (DPD-BST) 
7. DPD merged with Π-model (DPD-ΠM) 
8. DPD-ΠM with Bootstrapping (DPD-ΠM-BST) 

Weak baselines

Strong baseline

DPD-based strategies
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Architectures and Training Strategies

1. Supervised only (SUPV) 
2. Bootstrapping (BST) 
3. Π-model (ΠM) 
4. Π-model with Bootstrapping (ΠM-BST) 
5. DPD 
6. DPD with Bootstrapping (DPD-BST) 
7. DPD merged with Π-model (DPD-ΠM) 
8. DPD-ΠM with Bootstrapping (DPD-ΠM-BST) 

1. GRU (GRU) 
2. Transformer (Trans)

cartesian 
product
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Datasets

Dataset Language Family Ancestor Language Number of Cognate Sets

WikiHan (phonetic) 
(Chang et al., 2022) Sinitic Middle Chinese 8,703

Rom-phon (Romance, phonetic version) 
(Meloni et al., 2021; Ciobanu and Dinu, 2018) Romance Latin 5,165
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Semisupervised Datasets

Number of labeled training examples (i.e. cognate sets with an associated 
gold protoform) in the train set for each labeling setting and dataset, as 

well as the total number of cognate sets for reference (100%).

We take away labels to simulate a semisupervised situation.
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Semisupervised Datasets

Number of labeled training examples (i.e. cognate sets with an associated 
gold protoform) in the train set for each labeling setting and dataset, as 

well as the total number of cognate sets for reference (100%).

We take away labels to simulate a semisupervised situation.

Our focus
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Evaluation Metrics

⯈ Accuracy (ACC): The percentage of exactly correct predictions 

⯈ Token edit distance (TED): The number of token insertions, deletions, or substitutions between 
predictions and targets (Levenshtein et al., 1966)  

⯈ Token error rate (TER): Length-normalized edit distance (Cui et al., 2022)  

⯈ Feature error rate (FER): Length-normalized phonological edit distance measured by PanPhon 
(Mortensen et al., 2016) 

⯈ B-Cubed F Score (BCFS): A measure of the structural similarity between predictions and targets 
(Amigó et al., 2009; List, 2019) 



Results
DPD Performs Well
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Bold: the best-performing 
model for each metric 
➀: significantly better than 
all weak baselines (SUPV, 
BST, and ΠM) on dataset 
seed 1 with p < 0.01 
➊: significantly better than 
the ΠM-BST strong 
baseline and all weak 
baselines on dataset seed 
1 with p < 0.01  
➁, ➂, ➃, ➋, ➌, ➍: likewise 
for dataset seeds 2–4.  

Results: 
10% Labeled 
WikiHan 
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Bold: the best-performing 
model for each metric 
➀: significantly better than 
all weak baselines (SUPV, 
BST, and ΠM) on dataset 
seed 1 with p < 0.01 
➊: significantly better than 
the ΠM-BST strong 
baseline and all weak 
baselines on dataset seed 
1 with p < 0.01  
➁, ➂, ➃, ➋, ➌, ➍: likewise 
for dataset seeds 2–4.  

DPD-ΠM-BST performs the 
best and significantly 
better than all baselines 
on all metrics.

Results: 
10% Labeled 
WikiHan 
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Bold: the best-performing 
model for each metric 
➀: significantly better than 
all weak baselines (SUPV, 
BST, and ΠM) on dataset 
seed 1 with p < 0.01 
➊: significantly better than 
the ΠM-BST strong 
baseline and all weak 
baselines on dataset seed 
1 with p < 0.01  
➁, ➂, ➃, ➋, ➌, ➍: likewise 
for dataset seeds 2–4.  

DPD-ΠM-BST performs the 
best and significantly 
better than all baselines 
on all metrics. 

Transformer trained with 
DPD performs similarly 
well.

Results: 
10% Labeled 
WikiHan 
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Results: 
10% Labeled 
Rom-phon 

Bold: the best-performing 
model for each metric 
➀: significantly better than 
all weak baselines (SUPV, 
BST, and ΠM) on dataset 
seed 1 with p < 0.01 
➊: significantly better than 
the ΠM-BST strong 
baseline and all weak 
baselines on dataset seed 
1 with p < 0.01  
➁, ➂, ➃, ➋, ➌, ➍: likewise 
for dataset seeds 2–4.  
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Results: 
10% Labeled 
Rom-phon 

Bold: the best-performing 
model for each metric 
➀: significantly better than 
all weak baselines (SUPV, 
BST, and ΠM) on dataset 
seed 1 with p < 0.01 
➊: significantly better than 
the ΠM-BST strong 
baseline and all weak 
baselines on dataset seed 
1 with p < 0.01  
➁, ➂, ➃, ➋, ➌, ➍: likewise 
for dataset seeds 2–4.  

Transformer performed 
the best when trained with 
DPD-ΠM-BST 
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Results: 
10% Labeled 
Rom-phon 

Bold: the best-performing 
model for each metric 
➀: significantly better than 
all weak baselines (SUPV, 
BST, and ΠM) on dataset 
seed 1 with p < 0.01 
➊: significantly better than 
the ΠM-BST strong 
baseline and all weak 
baselines on dataset seed 
1 with p < 0.01  
➁, ➂, ➃, ➋, ➌, ➍: likewise 
for dataset seeds 2–4.  

Transformer performed 
the best when trained with 
DPD-ΠM-BST 

GRU performed the best 
when trained with DPD-
BST 
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Performance 
on Different 
Labeling 
Settings  
(See Paper)

Performance distribution 
for varied labeling 
settings (dataset seed 1). 

x-axis: various labeling 
settings including 
semisupervised situations 
at 5%, 10%, 20%, and 30% 
and fully supervised 
reference at 100% (not 
drawn to scale).

WikiHan

Rom-phon



Analysis
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GRU-BST

GRU-DPD-BST

Hierarchical clustering of 
French phoneme 
embeddings obtained 
from the best run (within 
dataset seed 1 of 10% 
labeling setting) in the 
best DPD-based strategy-
architecture combination 
(top) and the best run 
from their non-DPD 
counterpart (bottom). 

Hierarchical 
Clustering of 
Phoneme 
Embeddings: 
French
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Hierarchical clustering of 
French phoneme 
embeddings obtained 
from the best run (within 
dataset seed 1 of 10% 
labeling setting) in the 
best DPD-based strategy-
architecture combination 
(top) and the best run 
from their non-DPD 
counterpart (bottom). 

Hierarchical 
Clustering of 
Phoneme 
Embeddings: 
French

GRU-BST

GRU-DPD-BST
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GRU-BST

GRU-DPD-BST

Hierarchical clustering of 
French phoneme 
embeddings obtained 
from the best run (within 
dataset seed 1 of 10% 
labeling setting) in the 
best DPD-based strategy-
architecture combination 
(top) and the best run 
from their non-DPD 
counterpart (bottom). 

Hierarchical 
Clustering of 
Phoneme 
Embeddings: 
French
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Trans-ΠM-BST

Trans-DPD-ΠM-BST

Hierarchical clustering of 
Cantonese phoneme 
embeddings obtained 
from the best run (within 
dataset seed 1 of 10% 
labeling setting) in the 
best DPD-based strategy-
architecture combination 
(top) and the best run 
from their non-DPD 
counterpart (bottom). 

Hierarchical 
Clustering of 
Phoneme 
Embeddings: 
Cantonese
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Additional Analyses (See Paper)

⯈ The interaction between D2P and P2D during training 

⯈ The error patterns of DPD-based vs. non-DPD-based models 

⯈ Transductive evaluation of reconstruction performance 

⯈ Ablation studies removing the unlabeled data 

⯈ Generalizing DPD to supervised reconstruction



Conclusion
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Conclusion

We introduce the new task of semisupervised reconstruction, marking a step forward 
toward building practical computational reconstruction systems that can assist early-
stage proto-language reconstruction projects.  

We design the DPD architecture to implement historical linguists' comparative 
method and learn effectively from unlabeled cognate sets, yielding performance that 
surpasses existing sequence-to-sequence reconstruction models and established 
semisupervised learning techniques, especially when protoform labels are scarce. 



Links
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Links

Paper: 

Code: 

Checkpoints:

https://arxiv.org/abs/2406.05930 (or conference site) 

https://github.com/cmu-llab/dpd 

https://huggingface.co/chaosarium/dpd

https://arxiv.org/abs/2406.05930
https://github.com/cmu-llab/dpd
https://huggingface.co/chaosarium/dpd
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