

Carnegie Mellon University Language echnologies

Semisupervised Neural Proto-Language Reconstruction

Liang Lu¹, Peirong Xie², David R. Mortensen¹

¹Carnegie Mellon University, ²University of Southern California

lianglu@cs.cmu.edu, louisxie@usc.edu, dmortens@cs.cmu.edu

Bangkok, Thailand

A 19th-century Discovery

language survived.

Historical linguists use the **comparative method** to reconstruct proto-languages.

Semisupervised Neural Proto-Language Reconstruction 3 ACL 2024

Languages change in systematic ways, and it is possible to reproducibly reconstruct proto-languages using these systematic patterns, even when no record of the proto-

Ancestor language

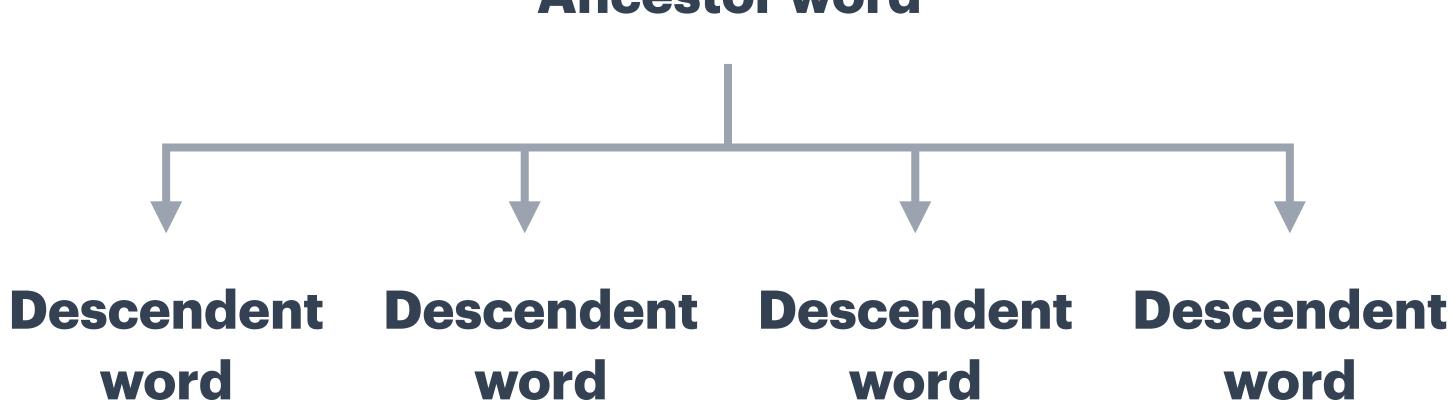
Systematic changes

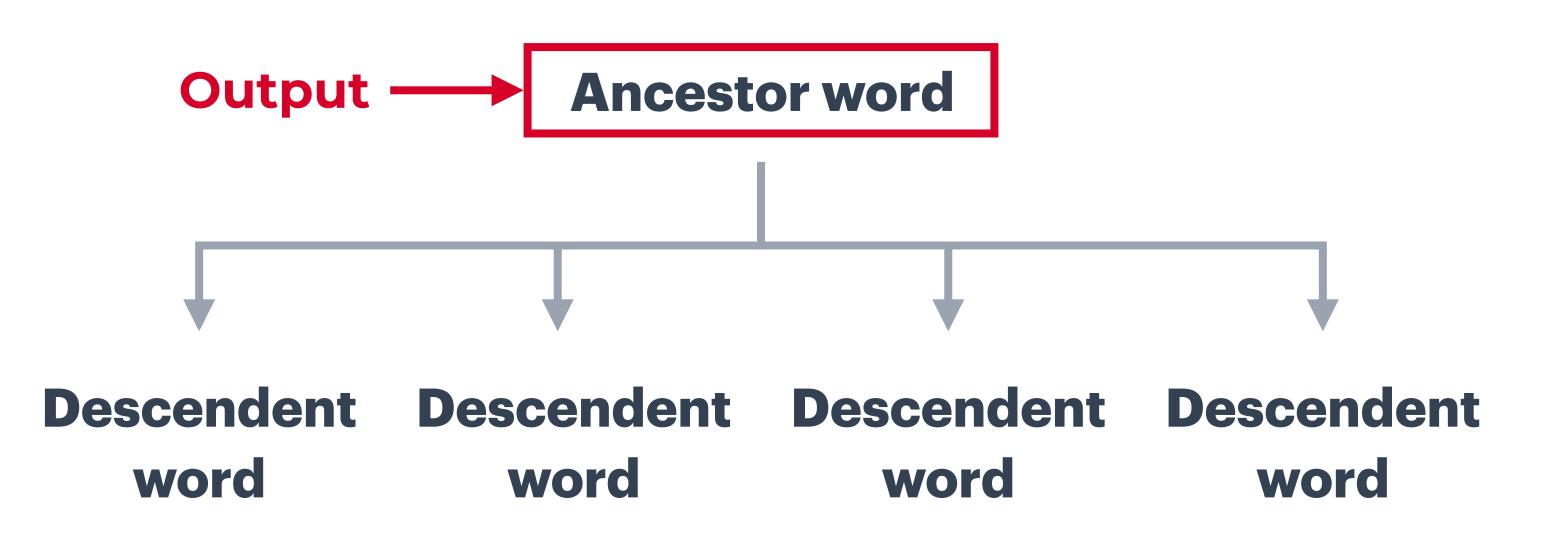
Descendent language

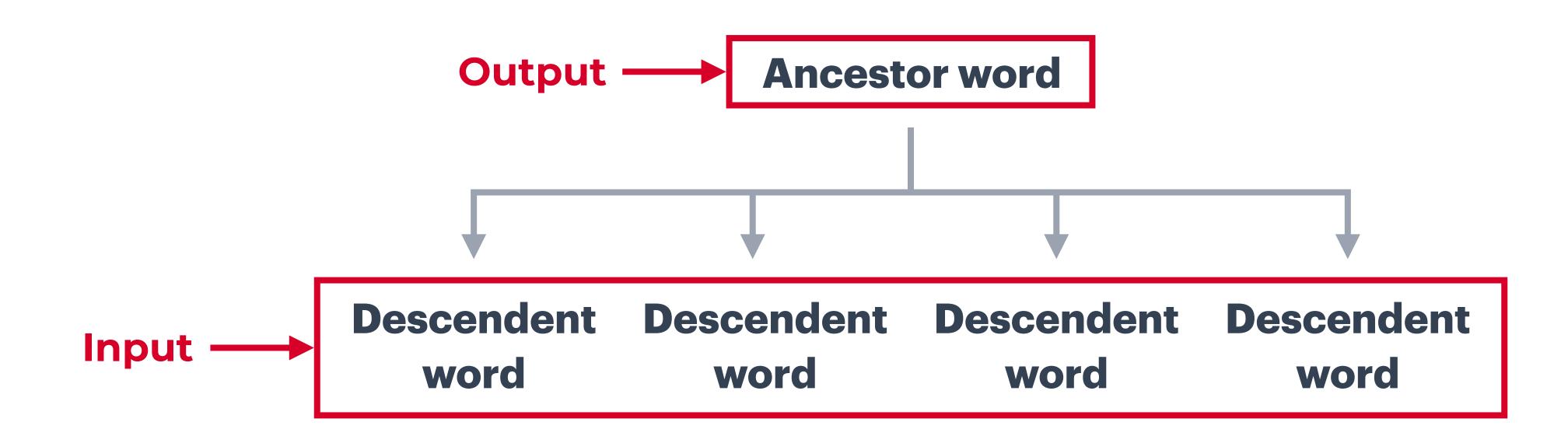
Ancestor word

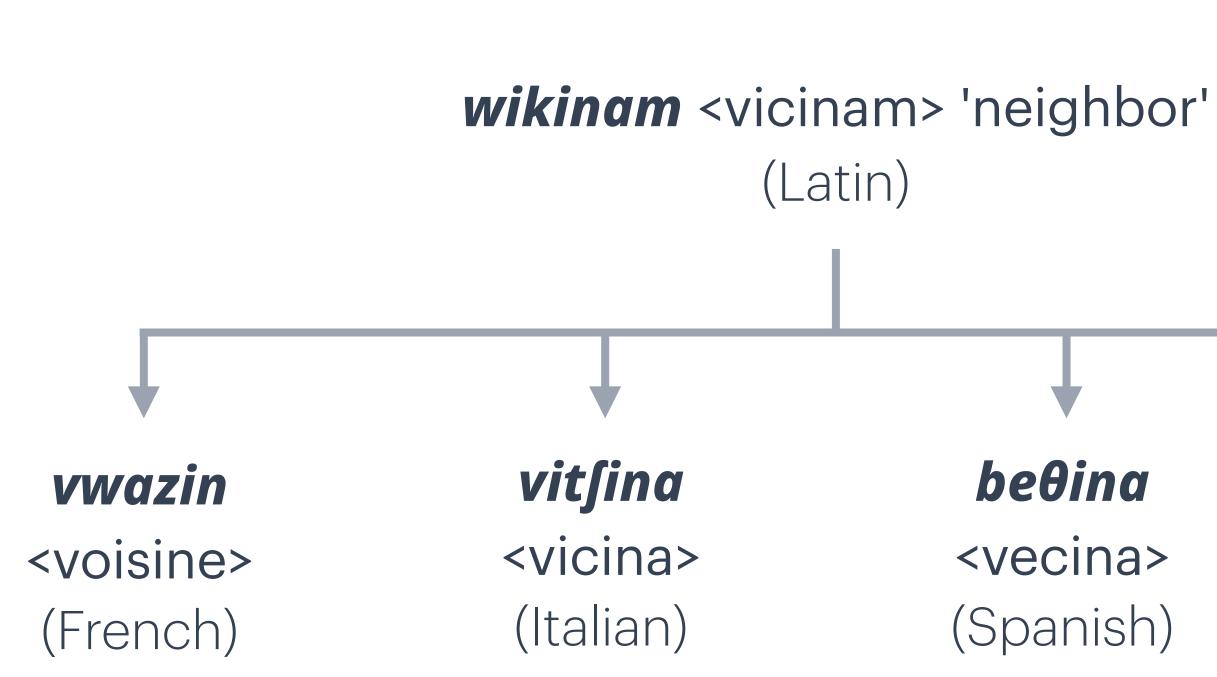
word word

ACL 2024 Semisupervised Neural Proto-Language Reconstruction 4

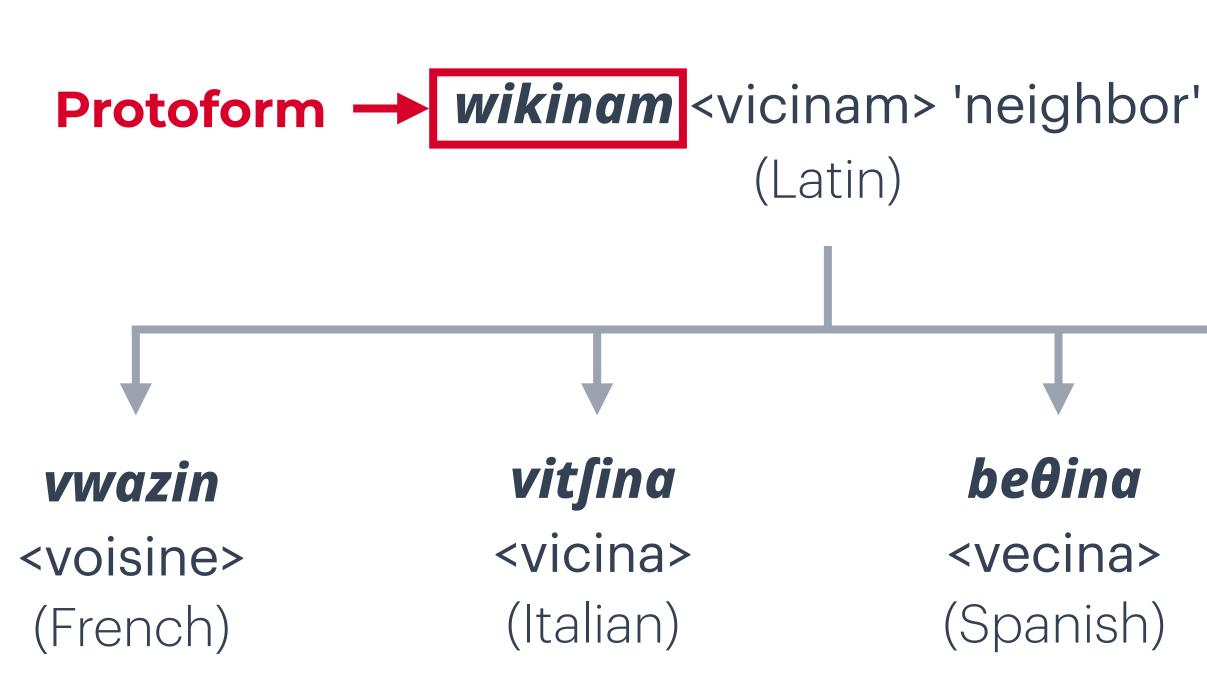




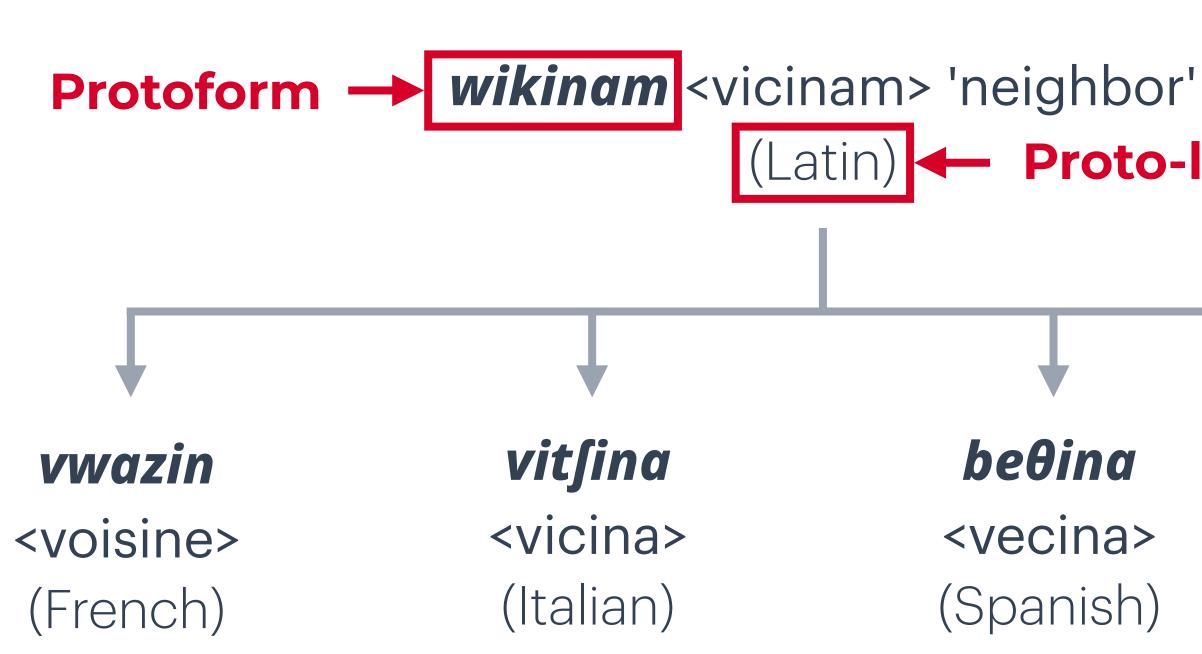




vizipe <vizinha> (Portuguese)

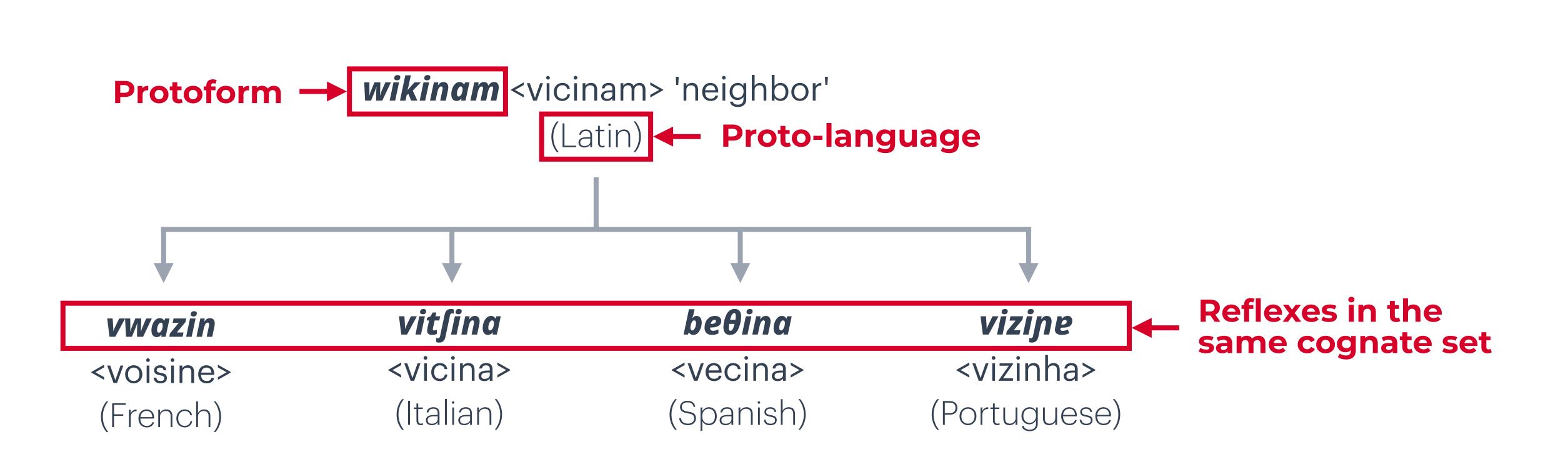


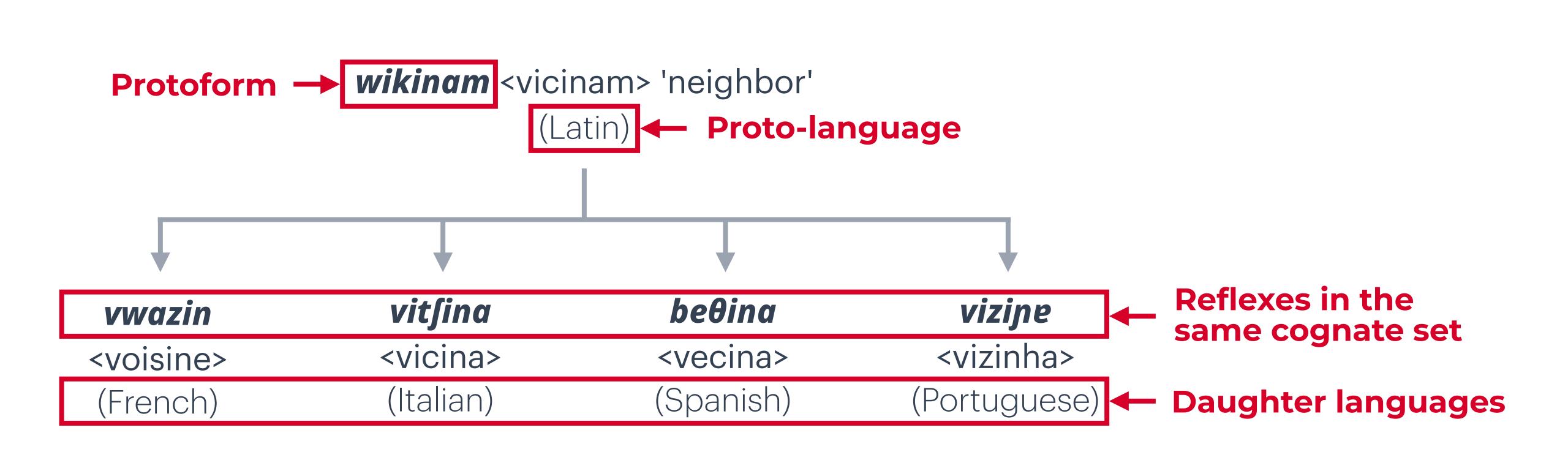
vizipe <vizinha> (Portuguese)

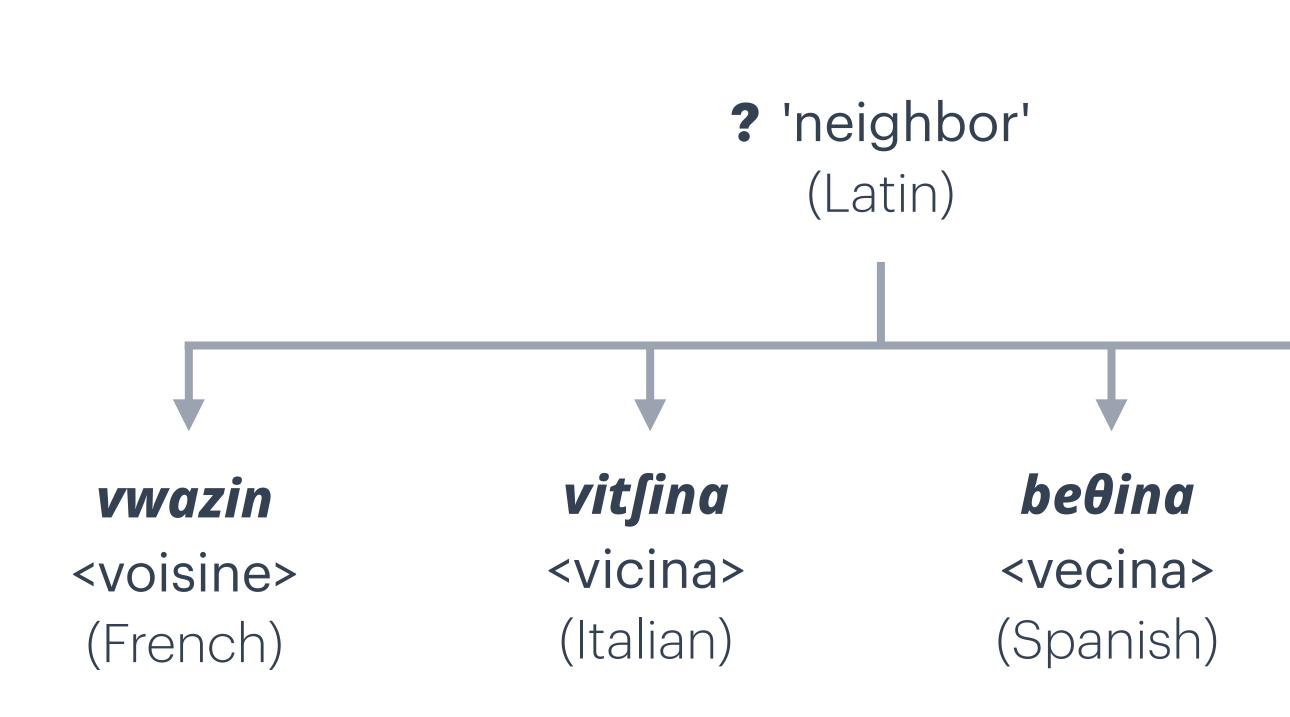


- Proto-language

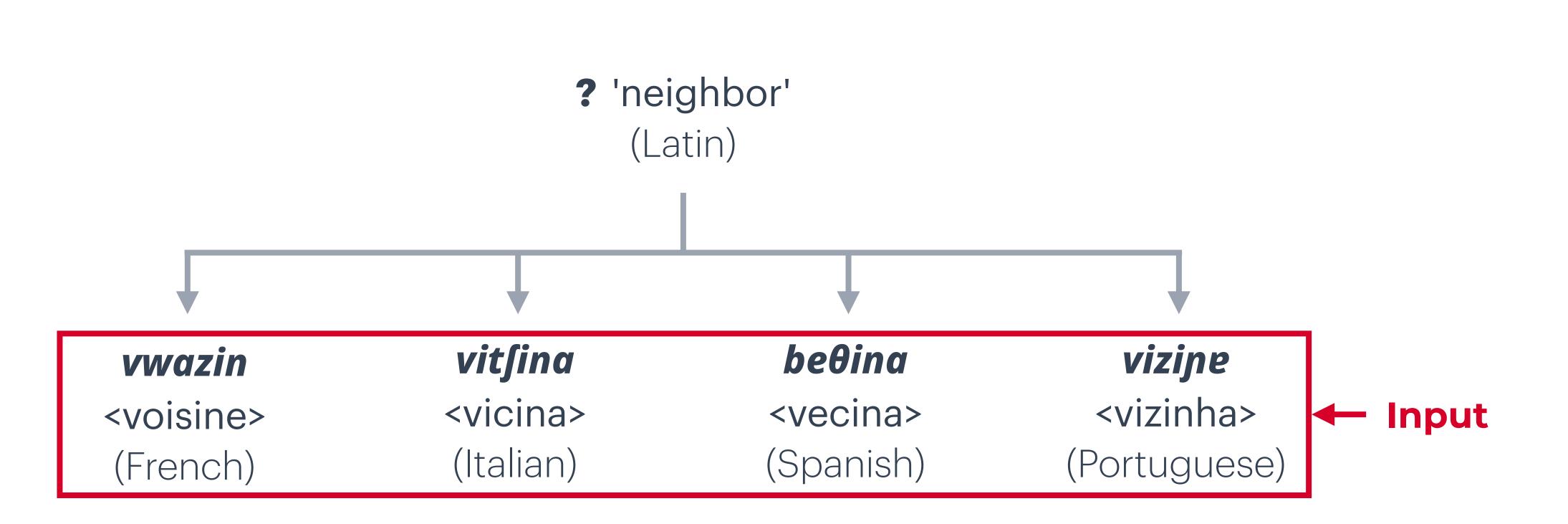
vizipe <vizinha> (Portuguese)

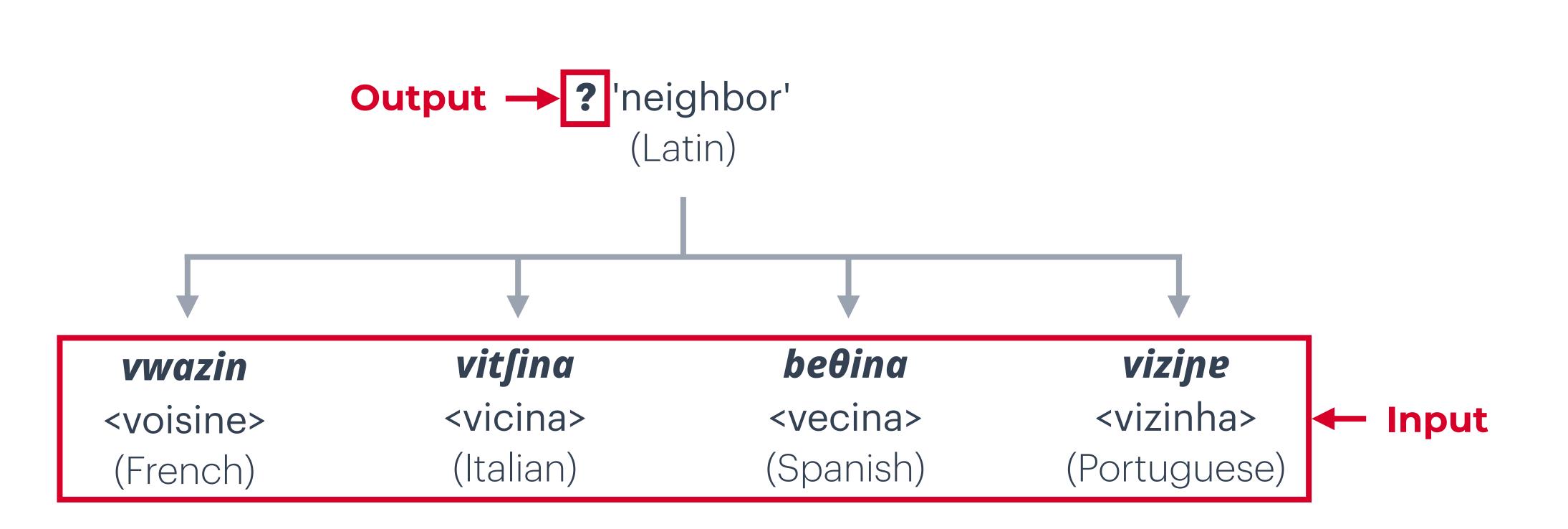






vizipe <vizinha> (Portuguese)





The Comparative Method

The regularity principle:

- Sound changes are regular
- of sound change rules

"Every sound change, in so far as it proceeds mechanically, is completed in accordance with laws admitting of no exceptions; i.e. the direction in which the change takes place is always the same for all members of a language community, apart from the case of dialect division, and all words in which the sound subject to change occurs in the same conditions are affected by the change without exception."

-H. Osthoff and K. Brugmann, Morphologische Untersuchungen auf dem Gebiete der indogermanischen Sprachen i, Leipzig, 1878, p. xiii (quoted in Szemerényi (1996))

Reflexes should be derivable deterministically from reconstructions using a single set

The Comparative Method

The regularity principle:

- Sound changes are regular
- of sound change rules

The comparative method is **challenging to apply in practice**, because examining a large number of cognate sets and complex combinations of sound changes can impose heavy cognitive load.

Reflexes should be derivable deterministically from reconstructions using a single set

Supervised Neural Reconstruction

- RNN with language embedding (Meloni et al., 2021)
- Transformer (Kim et al., 2023)
- ► **VAE** (Cui et al., 2022)

Note: Other input representations exist, such a stacked representation used by Cognate Transformer (Akavarapu and Bhattacharya, 2023)

Input sequence (concatenated reflexes) *[Cantonese]:mei/*[Mandarin]:mei/*[Wu]:me/*

Sequence-to-sequence model

Target prediction (Middle Chinese) mij³

Shown: the 煝 cognate set from WikiHan

Supervised Training

Cantonese	Gan	Hakka	Jin	Mandarin	Hokkien	Wu	Xiang	Label (Gold Protoform)
p ^ϧ ၓŋͿ	p ^հ uŋ1	p ^h uŋJ	p hxə̃ŋJJ	p ^հ ૪ŋ1	p ^h aŋ1	b̥ʊŋィ	אַסט	buŋ ^{w1}
moː1	mo۱	mja1	-	muˈɔ]	bɔŋ٦	mʊʔរ	_	mak⁴
saːn+	-	-	_	şan∖	sữã√	-	_	ຣູɛn²
k ^ь өу٦	-	-	-	fe ^h y1	k ^h iٍxʔٵ	-	_	k ^h i ¹
siːn1	-	⊊jen√	_	syan↓	€jɛn\	-	_	sjen²
leŭi	-	lju1	۲µejl	lĭoŭ1	lju∖	lĭзł	_	ljuw²
men-l	-	-	-	yən	bun⊦	-	_	mjun ³
tʊŋ1	tuŋ√	tuŋ√	tũŋٵ	tʊŋ√	tɔŋ\	tʊŋ1	tʊŋ\	tuŋ ^{w2}
tshey↓	-	-	-	[ξ ^h oʊ̯1	sju1	-	_	d͡ʑuw¹
jœːŋ٦	-	_	_	jaŋ7	ϳͻŋ٦	_	_	?jaŋ¹

Examples are from WikiHan, '-' indicates missing reflex in the dataset

Cantonese	Gan	Hakka	Jin	Mandarin	Hokkien	Wu	Xiang	Label (Gold Protoform)
p ^հ ʊŋJ	p ^հ uŋ1	pʰuŋJ	pʰxə̃ŋIJ	p ^հ ૪ŋ1	p ^h aŋ1	ۇت0≀	թԾյչ	(unavailable)
moː1	mo۱	mja1	_	muˈɔ]	bວŋ٦	հչջա	-	(unavailable)
saın-	-	-	-	şan∖	sữã√	-	-	(unavailable)
k ^ь ѳу٦	-	-	-	f ^{ch} y1	k'nį̃xʔℲ	-	-	k ^h i ¹
siːn1	-	si̯en√	-	syan↓	€jɛn\	-	-	(unavailable)
leňy	-	lju1	۲µG	lĭoŭ1	li̯u∖	lĭs∤	-	ljuw ²
men-l	-	-	-	yən	bun⊦	-	-	(unavailable)
tបŋ1	tuŋ√	tuŋ√	tũŋ۱	tʊŋJ	tɔŋ\	tʊŋ1	tʊŋ\	tuŋ ^{w2}
tsheu₁	-	-	_	[͡ şʰoʊ̯1	۱بانع	-	-	(unavailable)
jœːŋ٦	-	-	-	<u>i</u> αŋ٦	jɔŋ¹	-	-	(unavailable)

Examples are from WikiHan, '-' indicates missing reflex in the dataset

Cantonese	Gan	Hakka	Jin	Mandarin	Hokkien	Wu	Xiang	Label (Gold Protoform)
pʰʊŋᆡ	pʰuŋᆀ	p ^հ uŋJ	p hxə̃ŋIJ	p ^հ ૪ŋ1	pʰaŋᆀ	ۇت0⊦	թԾյ/	(unavailable)
moː1	mo۱	mja1	-	mu̯ɔๅ	bɔŋ٦	հչջա	-	(unavailable)
saːnɨ	-	-	-	şan∛	sữã√	-	-	(unavailable)
k ^h əy٦	-	-	-	fc ^h y٦	k'nį̃γ?⊣	-	-	k ^h i ¹
siːn1	-	si̯en√	-	⊊yanJ	kusĭa	-	-	(unavailable)
leŭł	-	lju1	١jəy	lĭoŭ1	lju≀	lĭзł	-	ljuw ²
men-l	-	-	-	yən	bun⊦	-	-	(unavailable)
tបŋ1	tuŋ√	tuŋ√	tũŋ۱	tʊŋJ	tɔŋ١	tʊŋ1	tʊŋ\	tuŋ ^{w2}
tshey∫	-	-	-	[͡ şʰoʊ̯1	huja	-	-	(unavailable)
jœːŋ٦	-	_	_	ϳαŋ٦	jɔŋ¹	_	-	(unavailable)

Examples are from WikiHan, '-' indicates missing reflex in the dataset

Gloss	'grandchild'	'bone'	'breast'	'laugh'
Labeled?	Yes	Yes	No	No
Kachai	ðе	rе	n e	ni
Huishu	ruk	ruk	nuk	nuk
Ukhrul	ru	ru	nu	nu
Protoform Label	d u	ru	nu	ni

Gloss	'grandchild'	'bone'	'breast'	'laugh'
Labeled?	Yes	Yes	No	No
Kachai	ðе	гe	ne	ni
Huishu	ruk	ruk	nuk	nuk
Ukhrul	ru	ru	nu	nu
Protoform Label	d u	ru	(hidden)	(hidden)

Gloss	'grandchild'	'bone'	'breast'	'laugh'	
Labeled?	Yes	Yes	No	No	
Kachai	ðе	rе	ne	ni	
Huishu	r u k	r u k	n u k	n u k	
Ukhrul	r u	r u	n u	n u	
Protoform Label	d u	r u	(hidden)	(hidden)	
Supervised Model	d u	ru	nu	n u	

Gloss	'grandchild'	'bone'	'breast'	'laugh'
Labeled?	Yes	Yes	No	No
Kachai	ð e	r e	n e	n i
Huishu	r u k	r u k	n u k	n u k
Ukhrul	ru	r u	n u	n u
Protoform Label	d u	ru	(hidden)	(hidden)
Supervised Model	d u	ru	nu	n u

d u → ð e r u r e n u n e n i n u

Trouble: Cannot deterministically derive the reflexes!

Gloss	'grandchild'	'bone'	'breast'	'laugh'
Labeled?	Yes	Yes	No	No
Kachai	ð e	r e	n e	n i
Huishu	r u k	r u k	n u k	n u k
Ukhrul	ru	r u	n u	n u
Protoform Label	d u	r u	(hidden)	(hidden)
Supervised Model	du	r u	nu	nu
emisupervised Model	d u	ru	nu	

Gloss	'grandchild'	'bone'	'breast'	'laugh'
Labeled?	Yes	Yes	No	No
Kachai	ð e	r e	n e	n i
Huishu	r u k	r u k	n u k	n u k
Ukhrul	r u	r u	nu	nu
Protoform Label	d u	ru	(hidden)	(hidden)
Supervised Model	d u	ru	nu	n 🗙
Semisupervised Model	d u	ru	n u	n 🛠
				f Something othe
				than u

Gloss	'grandchild'	'bone'	'breast'	'laugh'	
Labeled?	Yes	Yes	No	No	
Kachai	ð e	r e	n e	n i	
Huishu	r u k	r u k	n u k	n u k	
Ukhrul	r u	ru	n u	n u	
Protoform Label	d u	ru	n u	n i 🗕	— Indeed not <mark>u</mark>
Supervised Model	d u	ru	nu	n 🗙	
Semisupervised Model	d u	ru	n u	n 🛠	

Gloss	'grandchild'	'bone'	'breast'	'laugh'				
Labeled?	Yes	Yes	No	No				
Kachai	ð 🧧	r e	n e	n i				
Huishu	r u k	r u k	n u k	n u k				
Ukhrul	r u	r u	n u	n u				
Protoform Label	d u	ru	n u	n i				
DPD	du	ru	n u	n 🛠				
Reflexes Reco	Pro	toform?	flex Prediction	Reflexes?				
Daughter-to-Proto-to-Daughter (DPD)								

Semisupervised Neural Proto-Language Reconstruction 20 ACL 2024

Reflex Prediction

Input Sequence [Cantonese]mij³

Output Sequence mei l

21 ACL 2024 Semisupervised Neural Proto-Language Reconstruction

Input Sequence [Mandarin]mij³

[Wu]mij³

Input Sequence

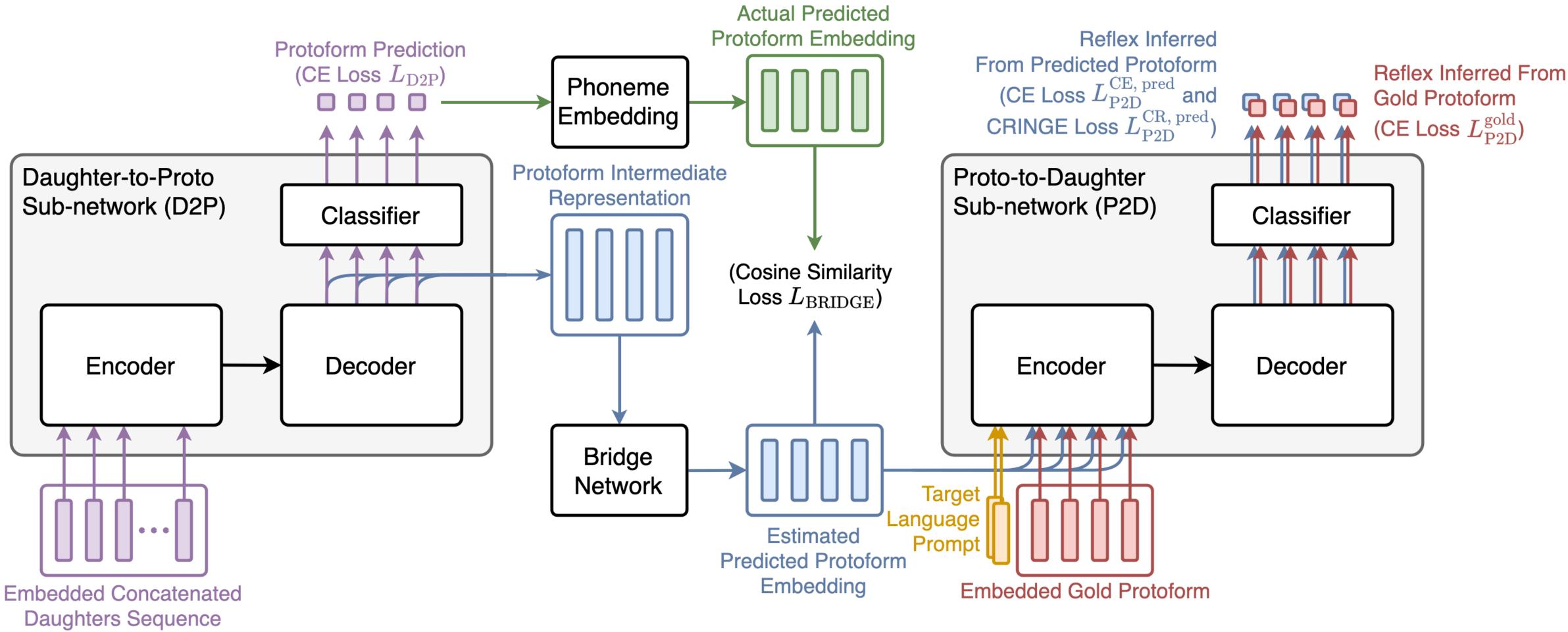
Output Sequence mej

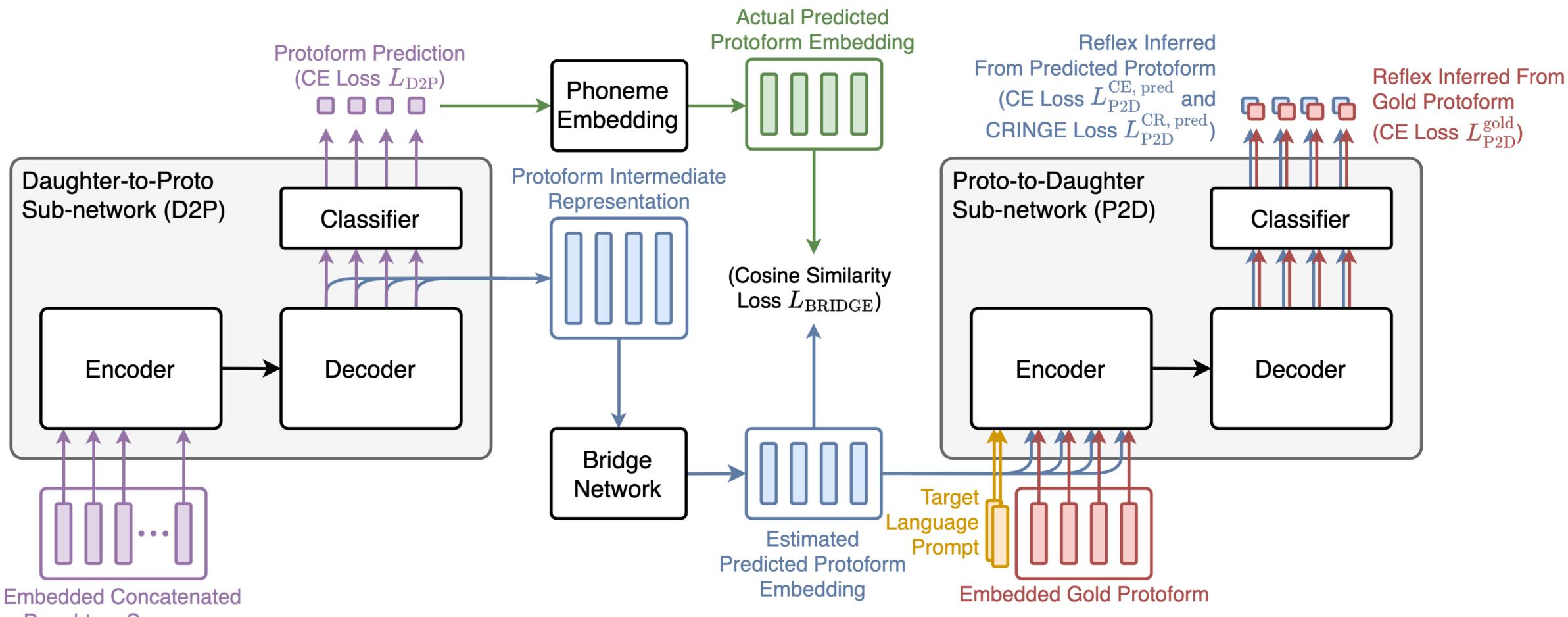
Output Sequence

Methods

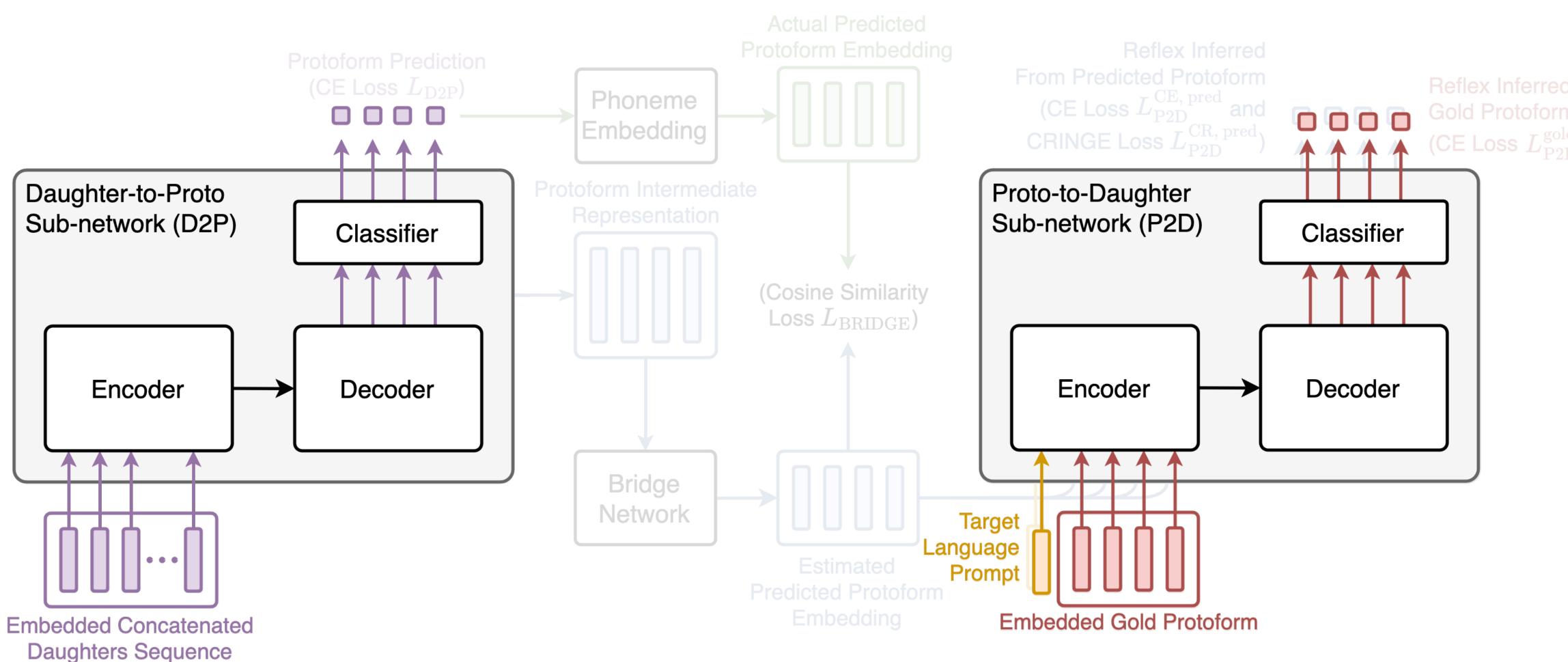
The DPD Architecture and the Experiments

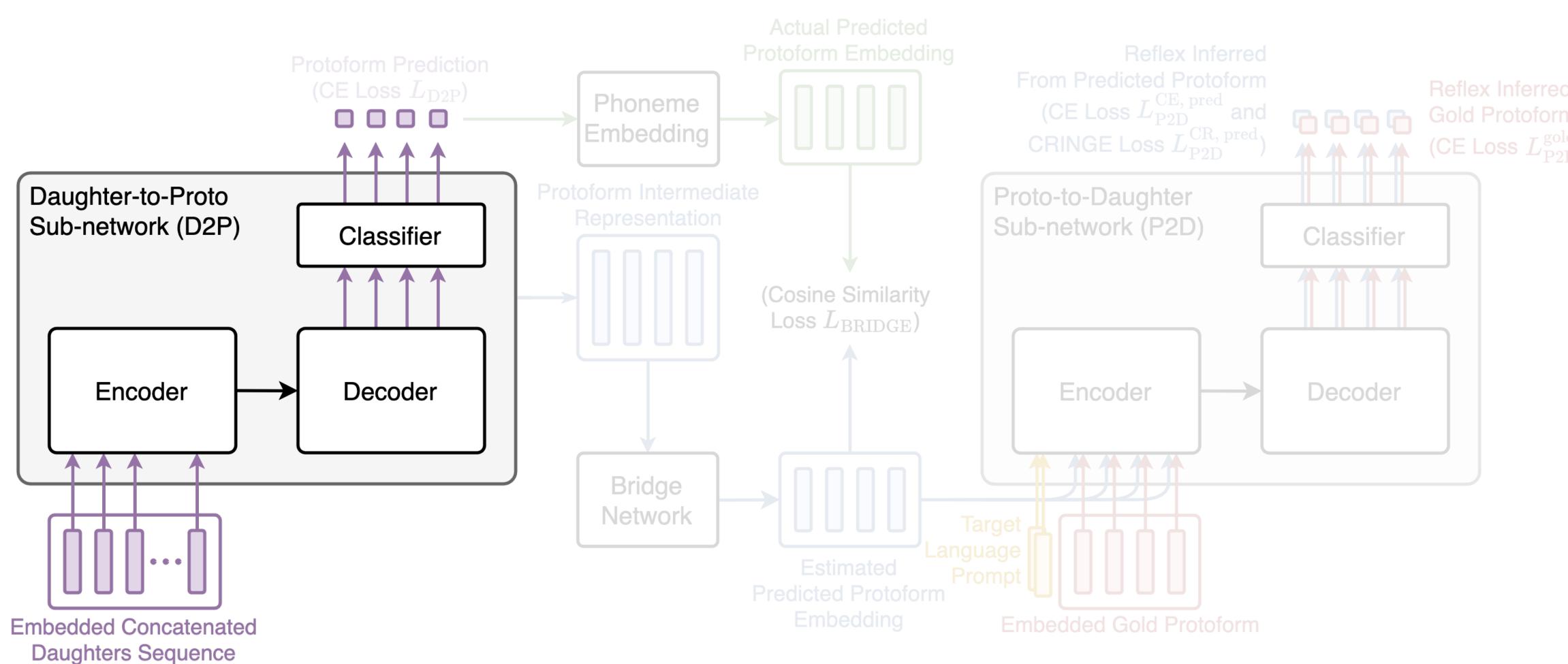
The DPD (Dughter-to-Proto-to-Daughter) Architecture

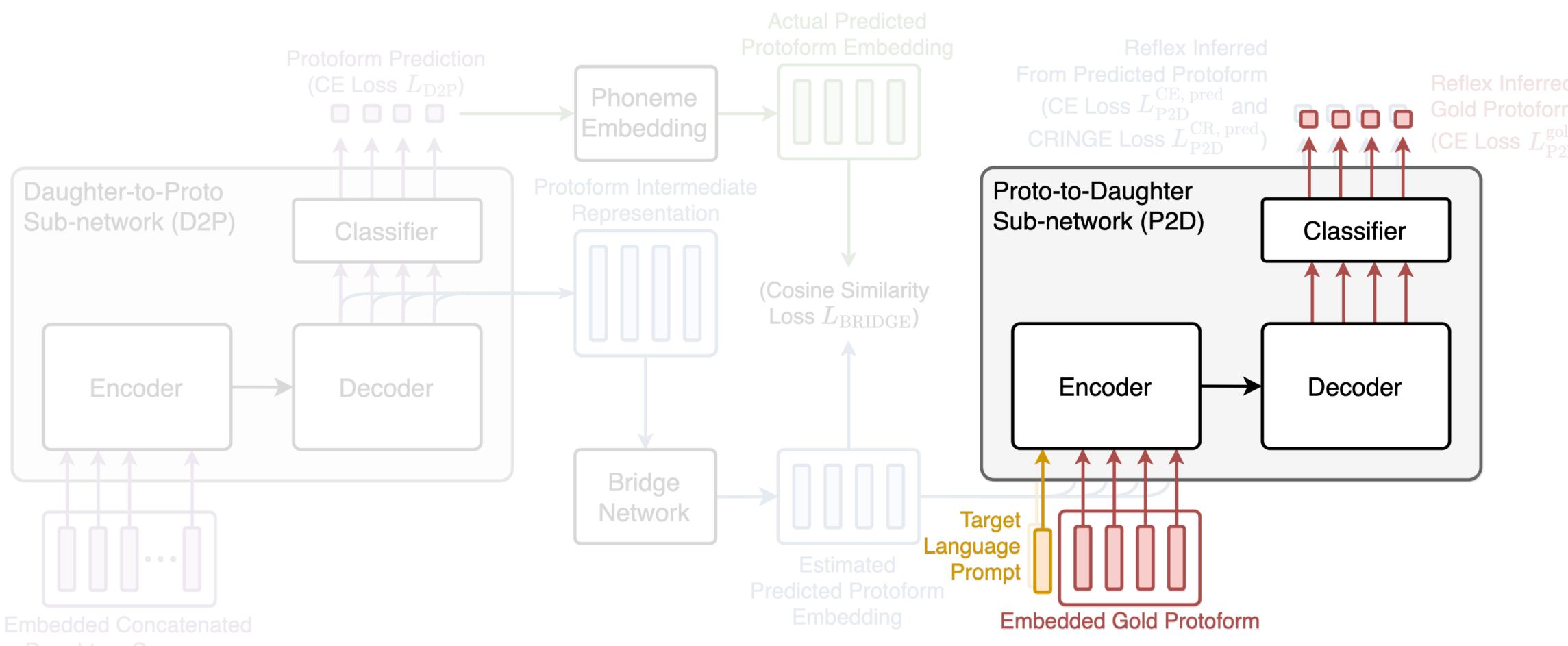




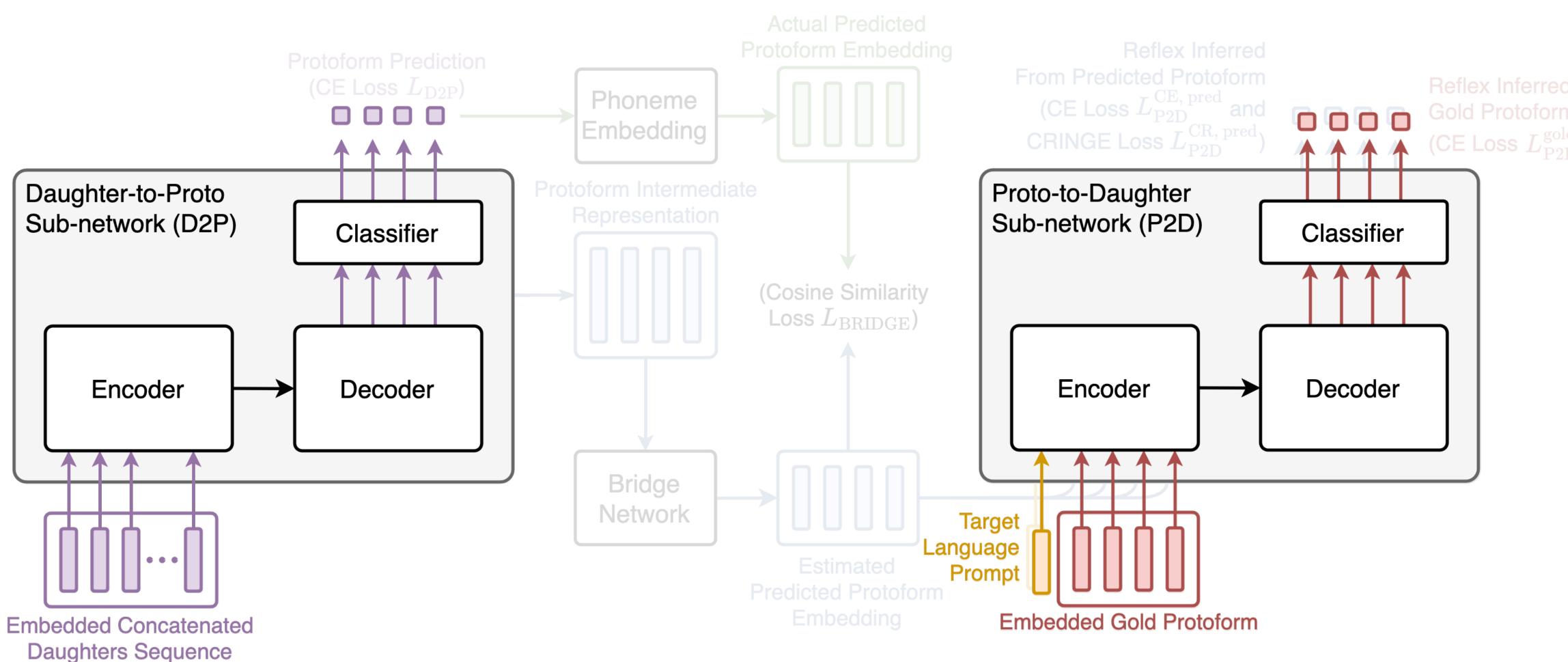
Daughters Sequence

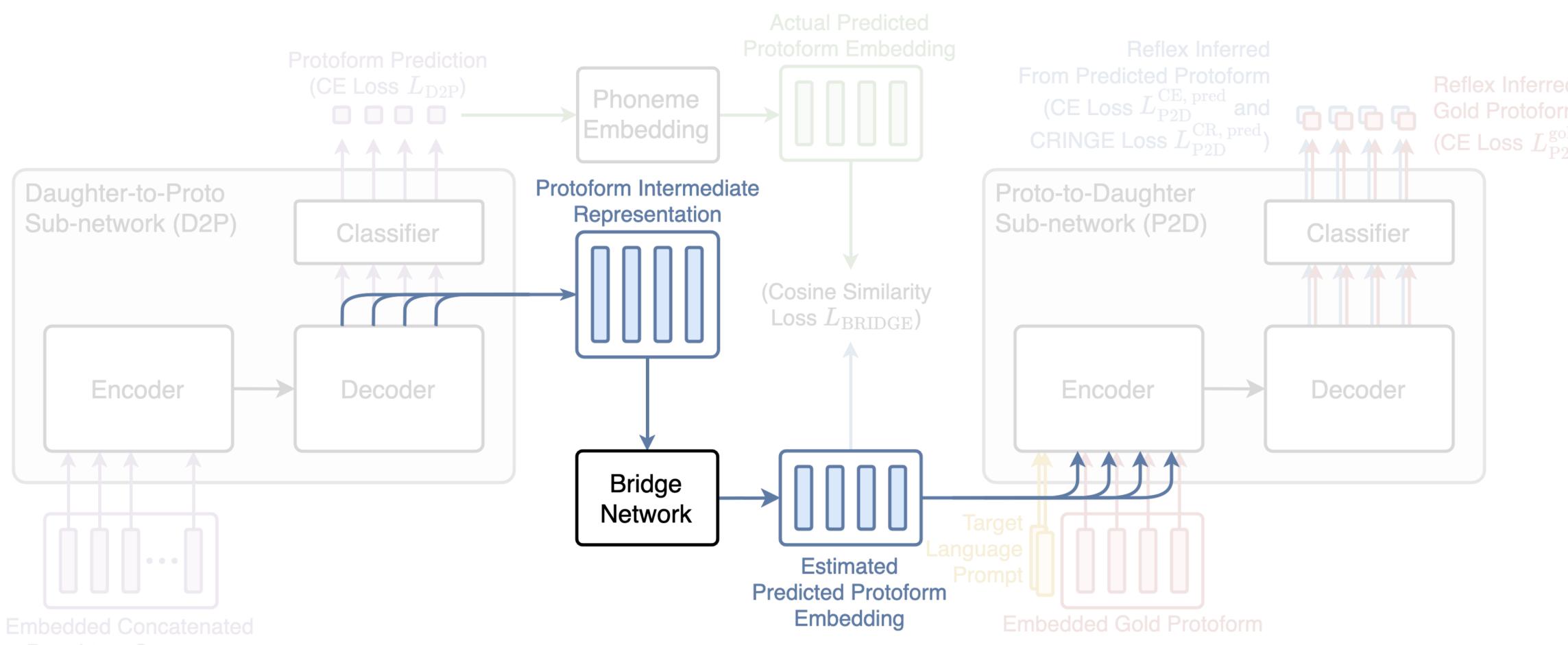




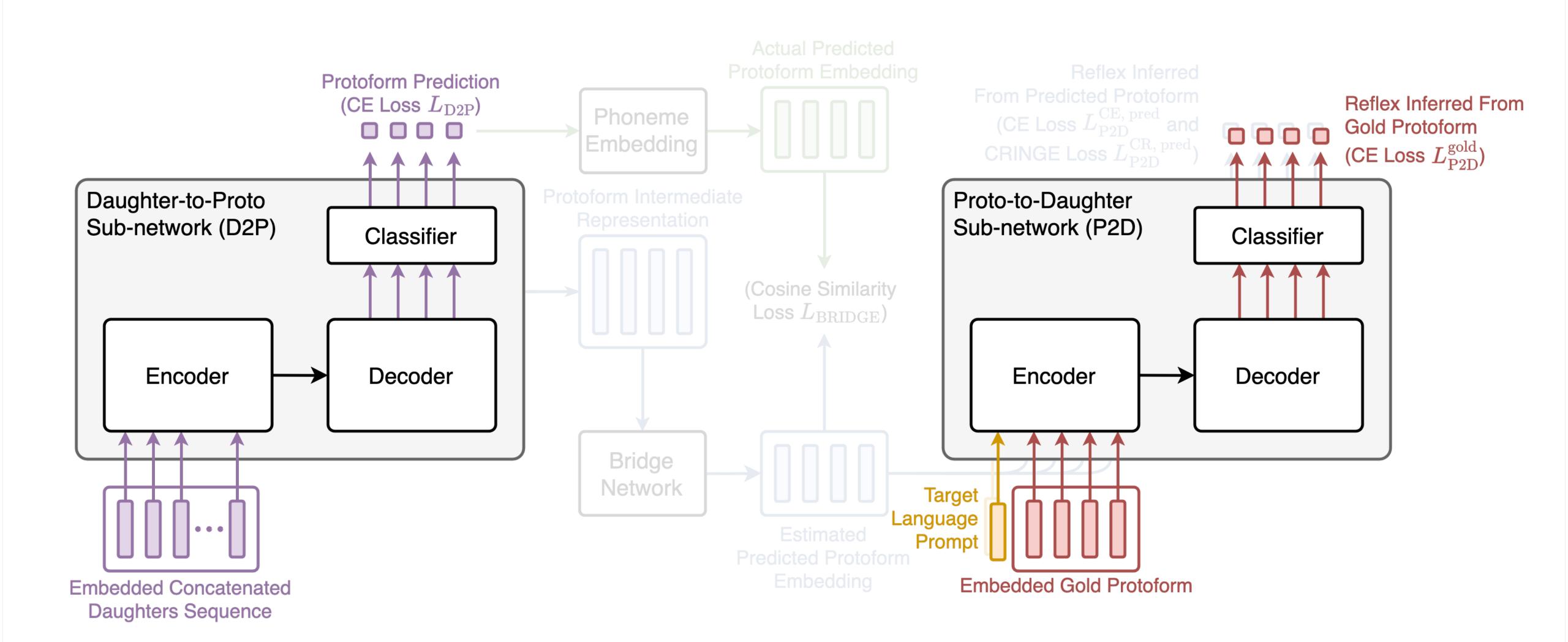


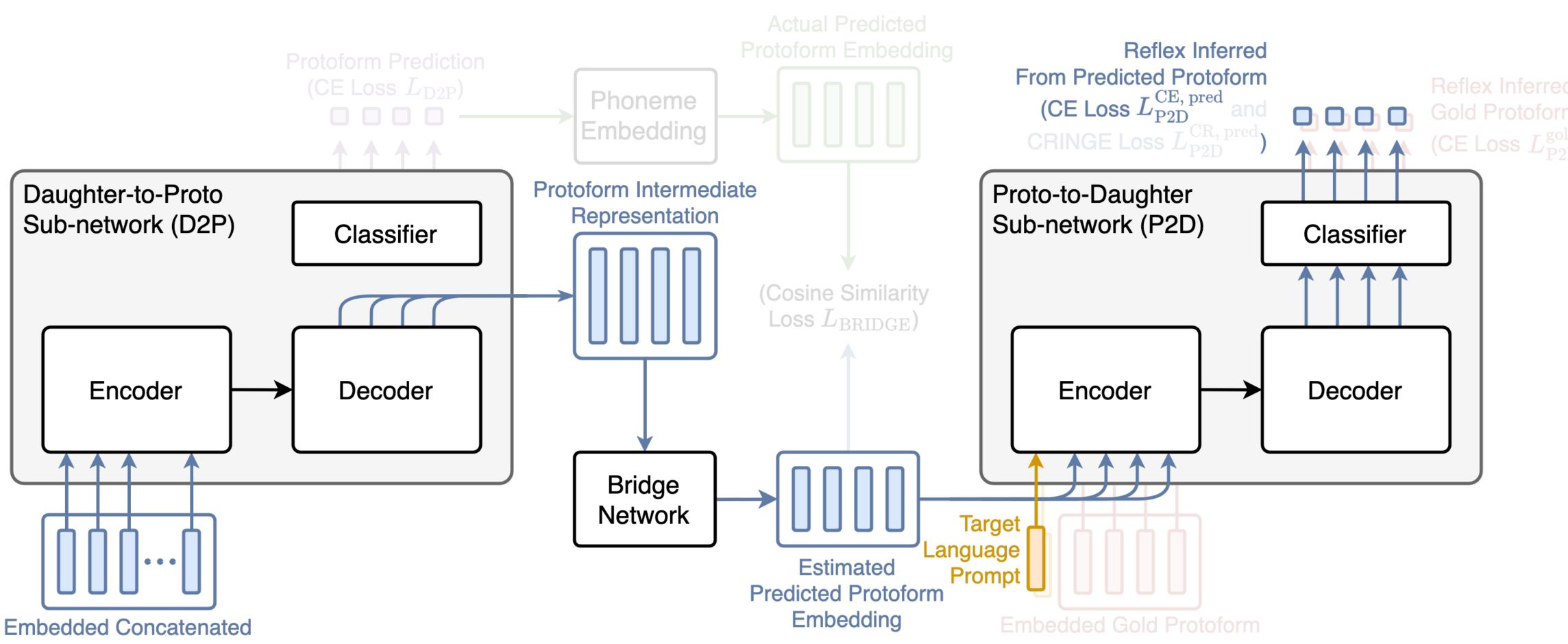
Daughters Sequence



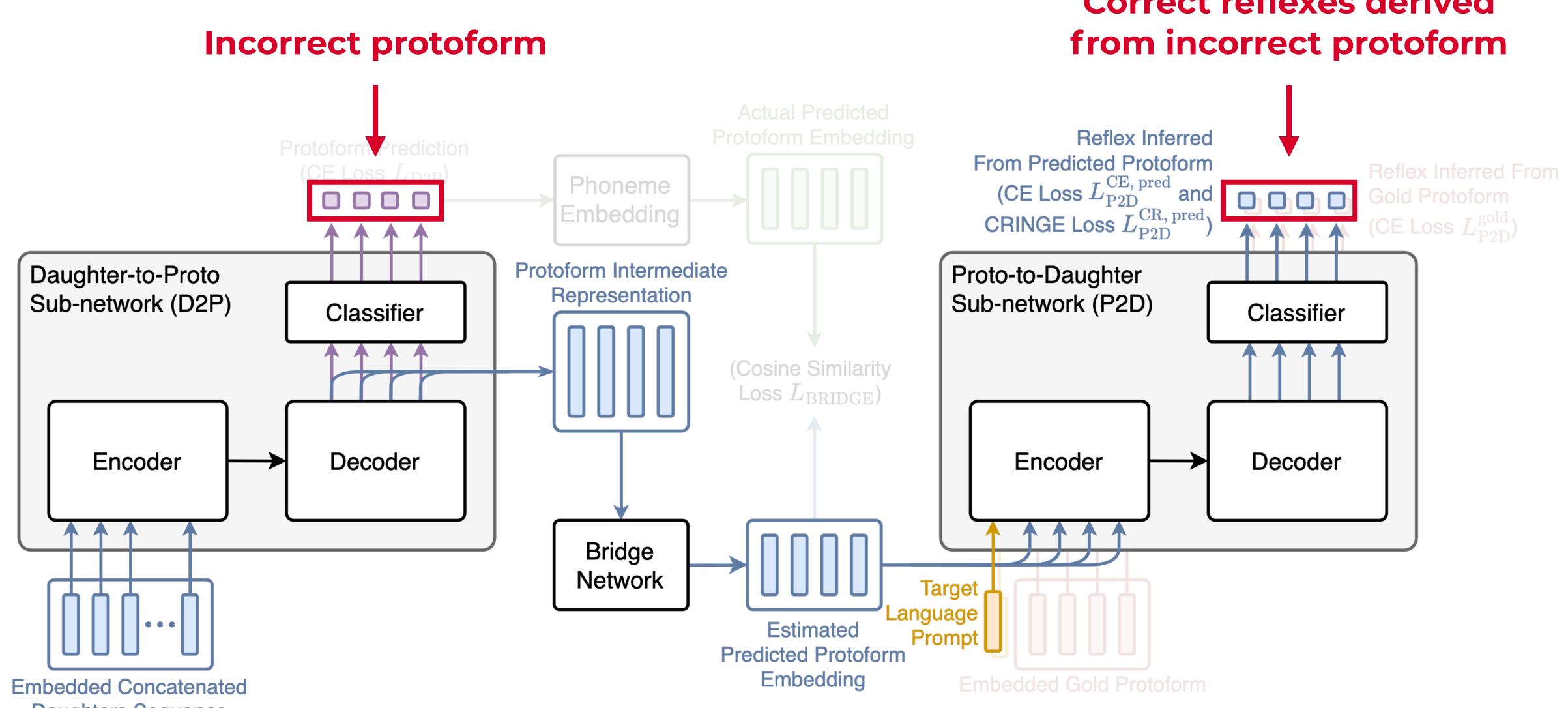


l From n d

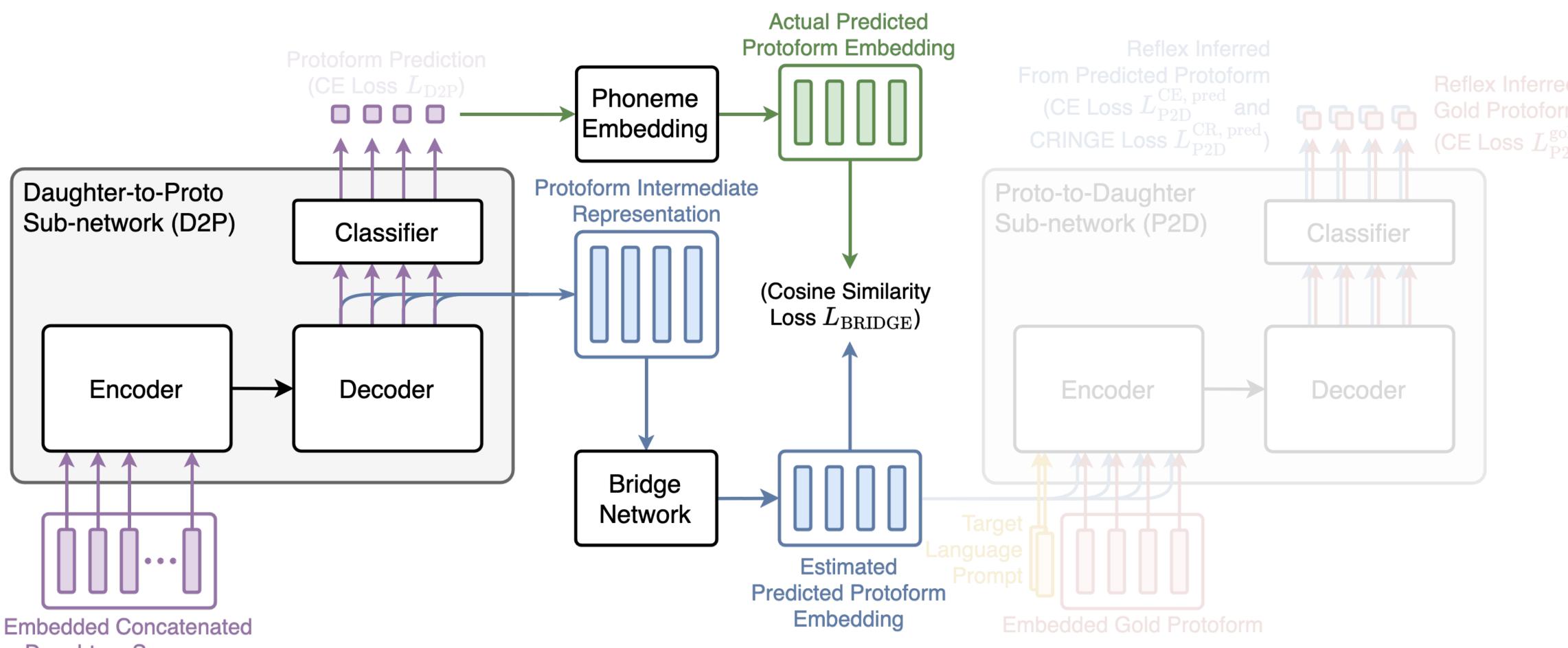




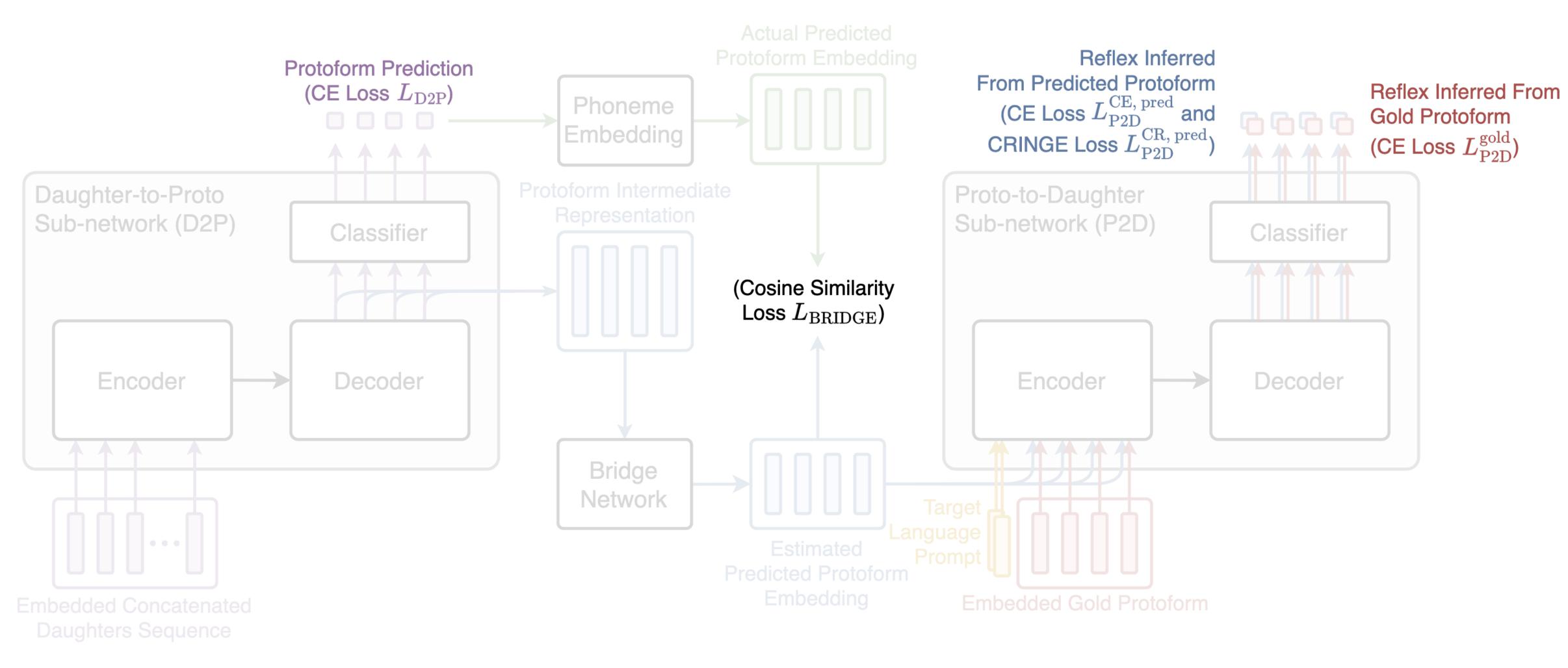
l From n d



Correct reflexes derived



l From n d



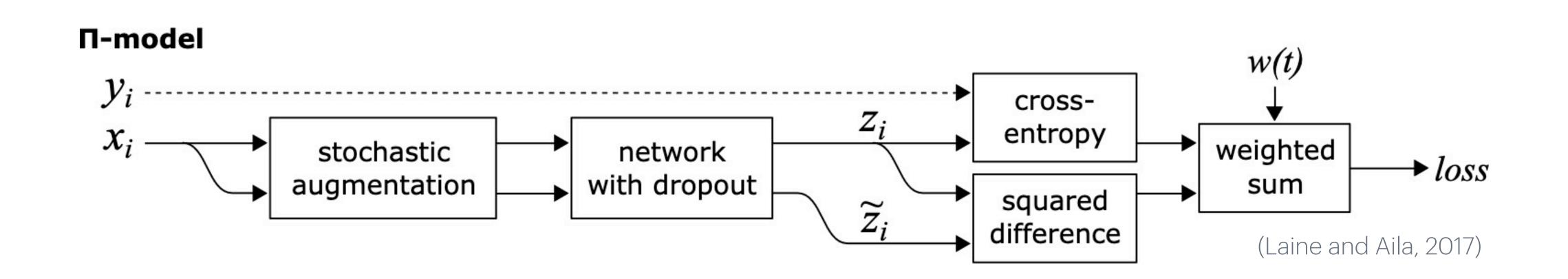
 $L_{ ext{overall}} = lpha_1 L_{ ext{D2P}} + lpha_2 L_{ ext{P2D}}^{ ext{CE, pred}} + lpha_3 L_{ ext{P2D}}^{ ext{CR, pred}} + lpha_4 L_{ ext{P2D}}^{ ext{gold}} + lpha_5 L_{ ext{BRIDGE}}$

where $\alpha_{\{1...5\}}$ are constants

Weak Baseline Strategies

Supervised only (SUPV): only train the model on the labeled training examples

predictions are added as pseudo-labels to the train set (Lee, 2013)



Semisupervised Neural Proto-Language Reconstruction 35 ACL 2024

- **Bootstrapping (BST):** A form of **proxy-labelling** in which the model's **most confident**
- **Π-Model (ΠΜ):** An implementation of **consistency regularization** by training the model to produce similar outputs on stochastically augmented inputs (Laine and Aila, 2017)

Implementing Stochastic Augmentation for **II-Model**

Semisupervised Neural Proto-Language Reconstruction 36 ACL 2024

Original input sequence *[Cantonese]:mei/*[Mandarin]:mei/*[Wu]:mei/*

Randomly reorder the reflexes *[Wu]:mei*[Mandarin]:mei*[Cantonese]:mei*

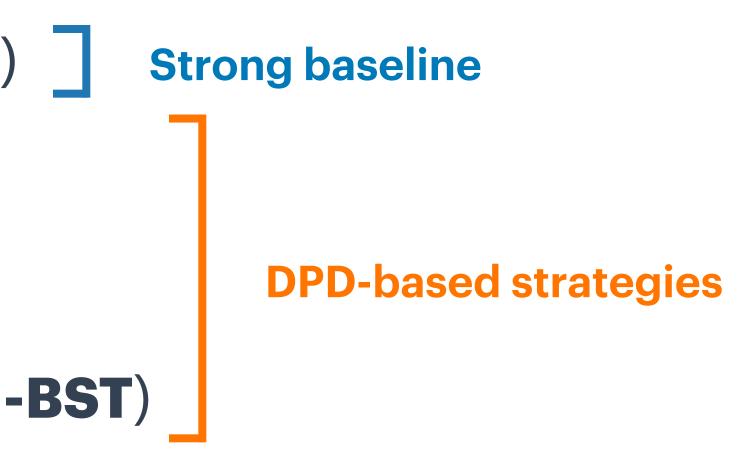
Drop a daughter language with a 50% probability (unless there is only one) *[Mandarin]:meil*[Cantonese]:meil*

Architectures and Training Strategies

- 1. Supervised only (SUPV)
- 2. Bootstrapping (**BST**)
- 3. П-model (**ПМ**)

Weak baselines

- 4. Π-model with Bootstrapping (ΠΜ-BST)
- 5. **DPD**
- 6. DPD with Bootstrapping (**DPD-BST**)
- 7. DPD merged with Π-model (**DPD-ΠM**)
- 8. DPD-ΠM with Bootstrapping (**DPD-ΠM-BST**)



Architectures and Training Strategies

- 1. Supervised only (SUPV)
- 2. Bootstrapping (**BST**)
- 3. П-model (**ПМ**)
- 4. Π-model with Bootstrapping (ΠΜ-BST)
- 5. **DPD**
- 6. DPD with Bootstrapping (**DPD-BST**)
- 7. DPD merged with Π-model (**DPD-ΠM**)
- 8. DPD-ΠM with Bootstrapping (**DPD-ΠM-BST**)

cartesian product

GRU (GRU)

2. Transformer (**Trans**)

Dataset	Language Family	Ancestor Language	Number of Cognate Set
WikiHan (phonetic) (Chang et al., 2022)	Sinitic	Middle Chinese	8,703
Rom-phon (Romance, phonetic version) (Meloni et al., 2021; Ciobanu and Dinu, 2018)	Romance	Latin	5,165

ets

Semisupervised Datasets

We take away labels to simulate a semisupervised situation.

	WikiHan	Rom-phon
5%	181	304
10%	362	607
20%	723	1,214
30%	1,084	1,821
100%	3,615	6,071

Number of labeled training examples (i.e. cognate sets with an associated gold protoform) in the train set for each labeling setting and dataset, as well as the total number of cognate sets for reference (100%).

Semisupervised Datasets

We take away labels to simulate a semisupervised situation.

			-
	WikiHan	Rom-phon	
5%	181	304	
10%	362	607	Our focus
20%	723	1,214	
30%	1,084	1,821	
100%	3,615	6,071	-

Number of labeled training examples (i.e. cognate sets with an associated gold protoform) in the train set for each labeling setting and dataset, as well as the total number of cognate sets for reference (100%).

Evaluation Metrics

- Accuracy (ACC): The percentage of exactly correct predictions
- Token edit distance (TED): The number of token insertions, deletions, or substitutions between predictions and targets (Levenshtein et al., 1966)
- Token error rate (TER): Length-normalized edit distance (Cui et al., 2022)
- Feature error rate (FER): Length-normalized phonological edit distance measured by PanPhon (Mortensen et al., 2016)
- B-Cubed F Score (BCFS): A measure of the structural similarity between predictions and targets (Amigó et al., 2009; List, 2019)

Results

DPD Performs Well

Results: 10% Labeled WikiHan

Bold: the best-performing model for each metric (1: significantly better than all weak baselines (SUPV, BST, and Π M) on dataset seed 1 with p < 0.01 (1: significantly better than the Π M-BST strong baseline and all weak baselines on dataset seed 1 with p < 0.01 (2, (3), (4), (2), (3), (4): likewise for dataset seeds 2–4.

Architecture	Strategy	ACC% ↑	TED ↓	TER↓	FER↓	BCFS ↑
Transformer	DPD-ПM-BST (ours)	40.50% 8	1.0075 8	0.2360 8	0.0970 8	0.6707 😫
	DPD-BST (ours)	39.06% 🎖	1.0367 🕵	0.2428 😫	0.0997 🎛	0.6630
	DPD-ПМ (ours)	37.72% 8	1.0791	0.2528	0.1022	0.6472 🕤
	DPD (ours)	39.50% 🎛	1.0356 🎛	0.2426 器	0.0993 🎇	0.6564
	ПM-BST	34.21%	1.1489	0.2691	0.1106	0.6371
	BST (Lee, 2013)	34.78%	1.1455	0.2683	0.1109	0.6334
	ПМ (Laine and Aila, 2017)	34.30%	1.1699	0.2740	0.1122	0.6209
	SUPV	33.25%	1.1891	0.2785	0.1140	0.6138
GRU	DPD-ПM-BST (ours)	39.74% 8	1.0280	0.2408 8	0.0972 🎇	0.6683
	DPD-BST (ours)	35.89% 📲	1.1025	0.2582	0.1039	0.6493
	DPD-ПМ (ours)	37.90% 👪	1.0697 🔐	0.2506	0.1006	0.6517 🖁
	DPD (ours)	34.51% 🖫	1.1538 ¹ / ₃₄	0.2703	0.1091 34	0.6278 🖁
	ПM-BST	34.99% 32	1.1479	0.2689	0.1077	0.6354 🕃
	BST (Lee, 2013)	28.18%	1.3092	0.3067	0.1208	0.5939
	ПМ (Laine and Aila, 2017)	32.59%	1.2047	0.2822	0.1137	0.6166
<u> </u>	SUPV	28.16%	1.3257	0.3105	0.1234	0.5835

Results: 10% Labeled WikiHan

Bold: the best-performing model for each metric (1: significantly better than all weak baselines (SUPV, BST, and Π M) on dataset seed 1 with p < 0.01 (1: significantly better than the Π M-BST strong baseline and all weak baselines on dataset seed 1 with p < 0.01 (2, (3), (4), (2), (3), (4): likewise for dataset seeds 2–4.

DPD-ITM-BST performs the best and significantly better than all baselines on all metrics.

Architecture	Strategy	ACC% ↑	TED \downarrow	TER \downarrow	FER↓	BCFS ↑
Transformer	DPD-ПМ-BST (ours)	40.50% 88	1.0075 8	0.2360 8	0.0970 🍔	0.6707
	DPD-BST (ours)	39.06% 8	1.0367 🚼	0.2428 8	0.0997 🎖	0.6630 🖁
	DPD-ПМ (ours)	37.72% 8	1.0791 🔮	0.2528	0.1022	0.6472 💣
	DPD (ours)	39.50% 8	1.0356 🎛	0.2426 🎖	0.0993 🎖	0.6564
	ПM-BST	34.21%	1.1489	0.2691	0.1106	0.6371
	BST (Lee, 2013)	34.78%	1.1455	0.2683	0.1109	0.6334
	ΠM (Laine and Aila, 2017)	34.30%	1.1699	0.2740	0.1122	0.6209
	SUPV	33.25%	1.1891	0.2785	0.1140	0.6138
GRU	DPD-ПM-BST (ours)	39.74% 88	1.0280	0.2408	0.0972 🎖	0.6683
	DPD-BST (ours)	35.89% 🖁	1.1025	0.2582	0.1039	0.6493
	DPD-ПМ (ours)	37.90%	1.0697 🔀	0.2506	0.1006	0.6517 🖁
	DPD (ours)	34.51% 🗿	1.1538 34	0.2703	0.1091 34	0.6278
	ПM-BST	34.99% 32	1.1479	0.2689	0.1077 🖁	0.6354 🕃
	BST (Lee, 2013)	28.18%	1.3092	0.3067	0.1208	0.5939
	ПМ (Laine and Aila, 2017)	32.59%	1.2047	0.2822	0.1137	0.6166
	SUPV	28.16%	1.3257	0.3105	0.1234	0.5835

Results: 10% Labeled WikiHan

Bold: the best-performing model for each metric (1: significantly better than all weak baselines (SUPV, BST, and Π M) on dataset seed 1 with p < 0.01 (1: significantly better than the Π M-BST strong baseline and all weak baselines on dataset seed 1 with p < 0.01 (2, (3), (4), (2), (3), (4): likewise for dataset seeds 2–4.

DPD-ITM-BST performs the best and significantly better than all baselines on all metrics.

Transformer trained with DPD performs similarly well.

Architecture	Strategy	ACC% ↑	TED ↓	TER↓	FER↓	BCFS ↑
Transformer	DPD-ПM-BST (ours)	40.50% 88	1.0075 🎇	0.2360	0.0970 🎇	0.6707
	DPD-BST (ours)	39.06% 🎖	1.0367 🎖	0.2428	0.0997 🎇	0.6630
	DPD-ПМ (ours)	37.72% 8	1.0791	0.2528	0.1022	0.6472 💣
	DPD (ours)	39.50% 8	1.0356	0.2426	0.0993 器	0.6564
	ПМ-BST	34.21%	1.1489	0.2691	0.1106	0.6371
	BST (Lee, 2013)	34.78%	1.1455	0.2683	0.1109	0.6334
	ПМ (Laine and Aila, 2017)	34.30%	1.1699	0.2740	0.1122	0.6209
	SUPV	33.25%	1.1891	0.2785	0.1140	0.6138
GRU	DPD-ПМ-BST (ours)	39.74% 88	1.0280	0.2408	0.0972	0.6683
	DPD-BST (ours)	35.89%	1.1025	0.2582	0.1039	0.6493
	DPD-ПМ (ours)	37.90%	1.0697	0.2506	0.1006	0.6517
	DPD (ours)	34.51% 🗿	1.1538 🗿	0.2703	0.1091 34	0.6278
	ПM-BST	34.99% 32	1.1479	0.2689	0.1077	0.6354 🛞
	BST (Lee, 2013)	28.18%	1.3092	0.3067	0.1208	0.5939
	ПМ (Laine and Aila, 2017)	32.59%	1.2047	0.2822	0.1137	0.6166
	SUPV	28.16%	1.3257	0.3105	0.1234	0.5835

Results: 10% Labeled Rom-phon

Bold: the best-performing model for each metric (1: significantly better than all weak baselines (SUPV, BST, and Π M) on dataset seed 1 with p < 0.01 (1: significantly better than the Π M-BST strong baseline and all weak baselines on dataset seed 1 with p < 0.01 (2, (3), (4), (2), (3), (4): likewise for dataset seeds 2–4.

Architecture	Strategy	ACC% ↑	TED \downarrow	TER \downarrow	FER↓	BCFS ↑
Transformer	DPD-ПM-BST (ours)	34.63% 8	1.3115 🍔	0.1463 8	0.0588	0.7850
	DPD-BST (ours)	33.51% 器	1.3605 器	0.1517 器	0.0599 🎖	0.7763 🖁
	DPD-ПМ (ours)	29.24%	1.5888	0.1772	0.0732	0.7423
	DPD (ours)	31.94% 34	1.5111	0.1685	0.0678 3^{2}	0.7529
	ПМ-BST	32.10% 34	1.4005	0.1562	0.0636	0.7716 🛞
	BST (Lee, 2013)	29.95%	1.5066	0.1680	0.0704	0.7555
	ΠM (Laine and Aila, 2017)	26.97%	1.7134	0.1911	0.0796	0.7239
	SUPV	26.99%	1.7331	0.1933	0.0794	0.7218
GRU	DPD-ПM-BST (ours)	36.78% 🛯	1.2380 😫	0.1381 🕵	0.0483 8	0.7980 🕱
	DPD-BST (ours)	37.60% 🎖	1.2149 🎇	0.1355 🍪	0.0457 🎖	0.8014
	DPD-ПМ (ours)	31.51%	1.4892	0.1661	0.0628	0.7586
	DPD (ours)	31.12%	1.4837	0.1655	0.0608	0.7591
	ПМ-BST	35.50%	1.2970	0.1447	0.0531	0.7909 ^①
	BST (Lee, 2013)	35.87%	1.2893	0.1438	0.0509	0.7908
	ПМ (Laine and Aila, 2017)	29.40%	1.5440	0.1722	0.0643	0.7517
	SUPV	30.69%	1.5018	0.1675	0.0612	0.7558

1

Results: 10% Labeled Rom-phon

Bold: the best-performing model for each metric (1: significantly better than all weak baselines (SUPV, BST, and Π M) on dataset seed 1 with p < 0.01 (1: significantly better than the Π M-BST strong baseline and all weak baselines on dataset seed 1 with p < 0.01 (2, (3), (4), (2), (3), (4): likewise for dataset seeds 2–4.

Transformer performed the best when trained with DPD-ΠM-BST

Architecture	Strategy	ACC%↑	TED ↓	TER↓	FER↓	BCFS ↑
Transformer	DPD-ПМ-BST (ours)	34.63% 8	1.3115 🎇	0.1463	0.0588	0.7850
	DPD-BST (ours)	33.51% 🕱	1.3605 器	0.1517 👫	0.0599 🎖	0.7763 🖁
	DPD-ПМ (ours)	29.24%	1.5888	0.1772	0.0732	0.7423
	DPD (ours)	31.94% 34	1.5111	0.1685	0.0678 3^{2}	0.7529
	ПM-BST	32.10% 34	1.4005	0.1562	0.0636 $\frac{12}{34}$	0.7716 🎛
	BST (Lee, 2013)	29.95%	1.5066	0.1680	0.0704	0.7555
	ПМ (Laine and Aila, 2017)	26.97%	1.7134	0.1911	0.0796	0.7239
	SUPV	26.99%	1.7331	0.1933	0.0794	0.7218
GRU	DPD-ПM-BST (ours)	36.78% 🕶	1.2380 🚼	0.1381 8	0.0483 8	0.7980 🔮
	DPD-BST (ours)	37.60% 🎖	1.2149 🍔	0.1355 🍪	0.0457 🎖	0.8014
	DPD-ПМ (ours)	31.51%	1.4892	0.1661	0.0628	0.7586
	DPD (ours)	31.12%	1.4837	0.1655	0.0608	0.7591
	ПM-BST	35.50%	1.2970	0.1447	0.0531	0.7909 ^①
	BST (Lee, 2013)	35.87%	1.2893	0.1438	0.0509	0.7908
	ПМ (Laine and Aila, 2017)	29.40%	1.5440	0.1722	0.0643	0.7517
	SUPV	30.69%	1.5018	0.1675	0.0612	0.7558

1

Results: 10% Labeled Rom-phon

Bold: the best-performing model for each metric (1: significantly better than all weak baselines (SUPV, BST, and Π M) on dataset seed 1 with p < 0.01 (1: significantly better than the Π M-BST strong baseline and all weak baselines on dataset seed 1 with p < 0.01 (2, (3), (4), (2), (3), (4): likewise for dataset seeds 2–4.

Transformer performed the best when trained with DPD-ΠM-BST

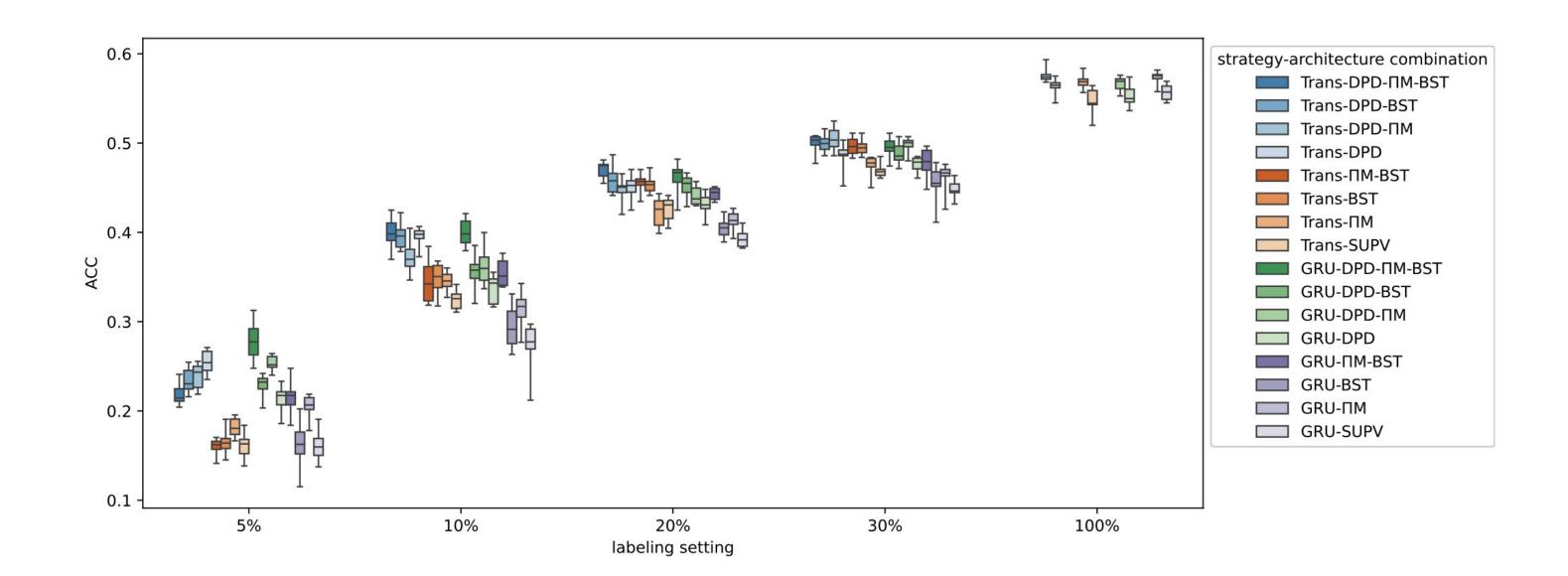
GRU performed the best when trained with DPD-BST

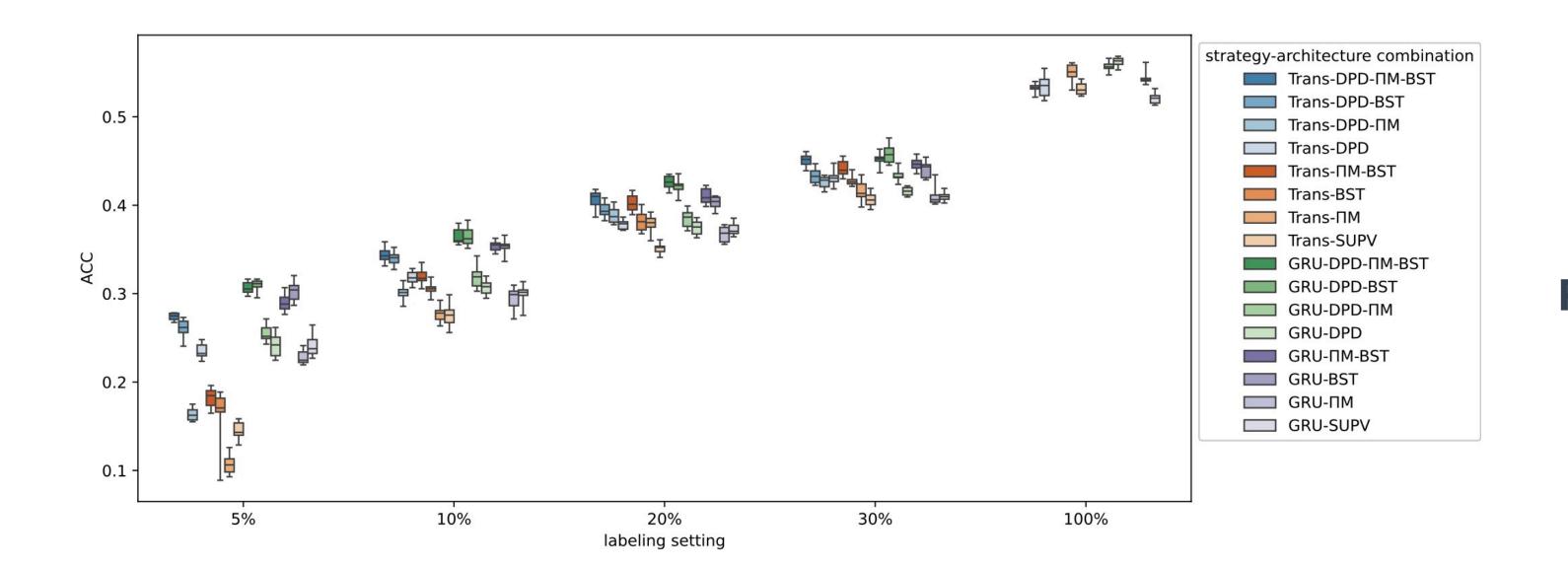
Architecture	Strategy	ACC% ↑	TED ↓	TER↓	FER↓	BCFS ↑
Transformer	DPD-ПM-BST (ours)	34.63% 8	1.3115 88	0.1463	0.0588	0.7850
	DPD-BST (ours)	33.51% 🕱	1.3605 器	0.1517 🔮	0.0599 🎖	0.7763 🕱
	DPD-ПМ (ours)	29.24%	1.5888	0.1772	0.0732	0.7423
	DPD (ours)	31.94% 34	1.5111	0.1685	0.0678 3^{2}	0.7529
	ПМ-BST	32.10% 34	1.4005	0.1562	0.0636 $\frac{12}{34}$	0.7716 🎇
	BST (Lee, 2013)	29.95%	1.5066	0.1680	0.0704	0.7555
	ПМ (Laine and Aila, 2017)	26.97%	1.7134	0.1911	0.0796	0.7239
	SUPV	26.99%	1.7331	0.1933	0.0794	0.7218
GRU	DPD-ПМ-BST (ours)	36.78% 🕶	1.2380 8	0.1381 🚼	0.0483 🖁	0.7980 🔮
	DPD-BST (ours)	37.60% 88	1.2149	0.1355	0.0457	0.8014
	DPD-ПМ (ours)	31.51%	1.4892	0.1661	0.0628	0.7586
	DPD (ours)	31.12%	1.4837	0.1655	0.0608	0.7591
	ПM-BST	35.50%	1.2970	0.1447	0.0531	0.7909 ^①
	BST (Lee, 2013)	35.87%	1.2893	0.1438	0.0509	0.7908
	ПМ (Laine and Aila, 2017)	29.40%	1.5440	0.1722	0.0643	0.7517
	SUPV	30.69%	1.5018	0.1675	0.0612	0.7558

Performance on Different Labeling Settings (See Paper)

Performance distribution for varied labeling settings (dataset seed 1).

x-axis: various labeling settings including semisupervised situations at 5%, 10%, 20%, and 30% and fully supervised reference at 100% (not drawn to scale).



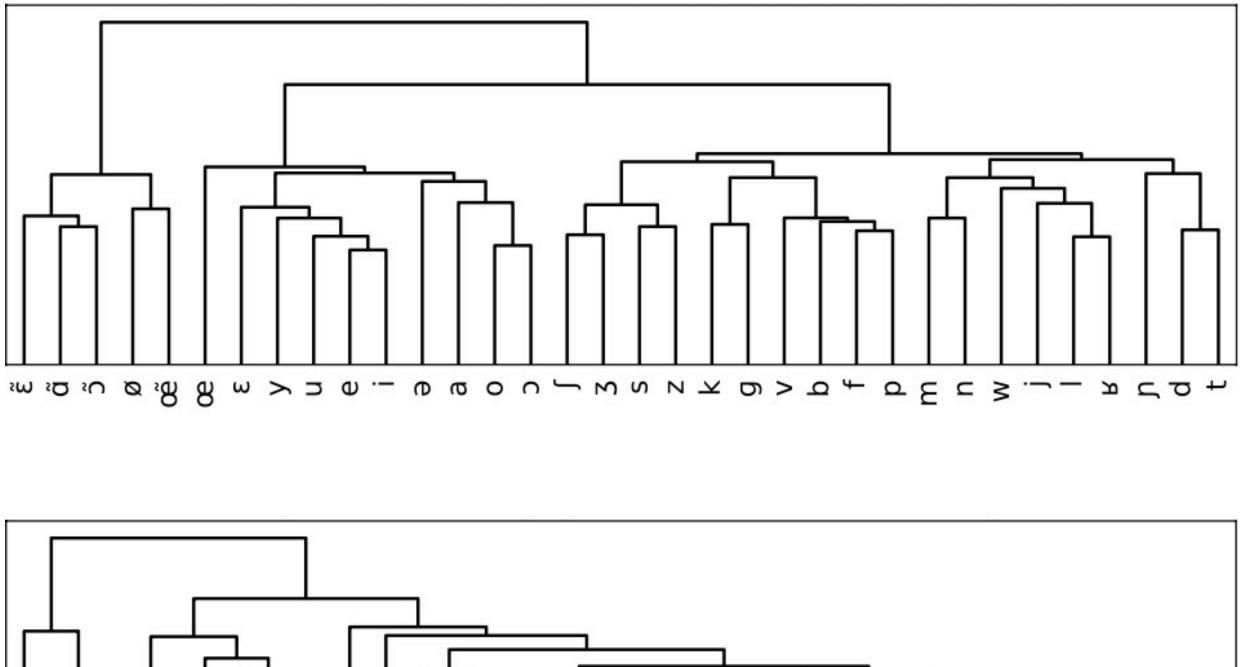


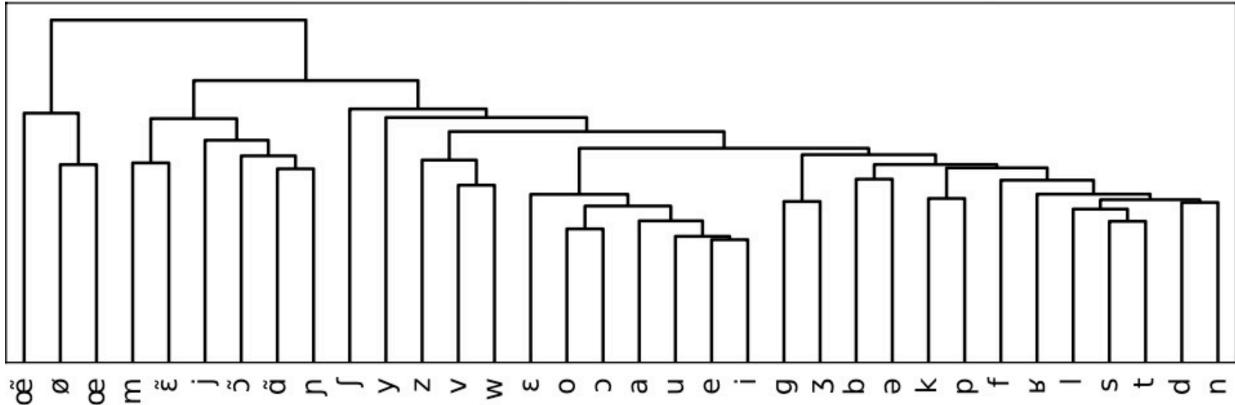
WikiHan

Rom-phon

Hierarchical Clustering of Phoneme Embeddings: French

Hierarchical clustering of French phoneme embeddings obtained from the best run (within dataset seed 1 of 10% labeling setting) in the best DPD-based strategyarchitecture combination (top) and the best run from their non-DPD counterpart (bottom).



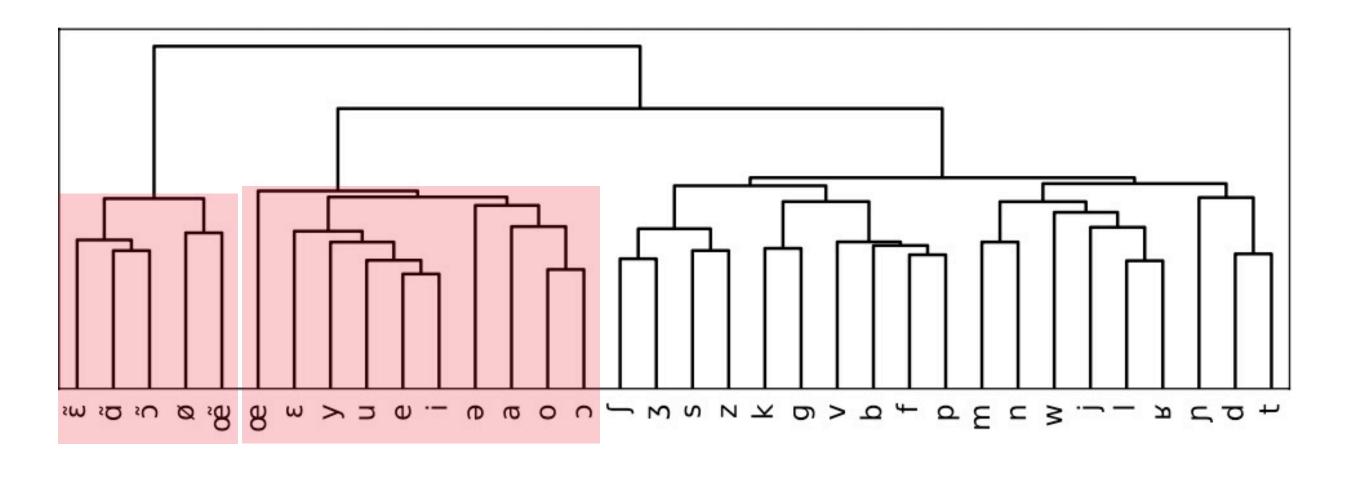


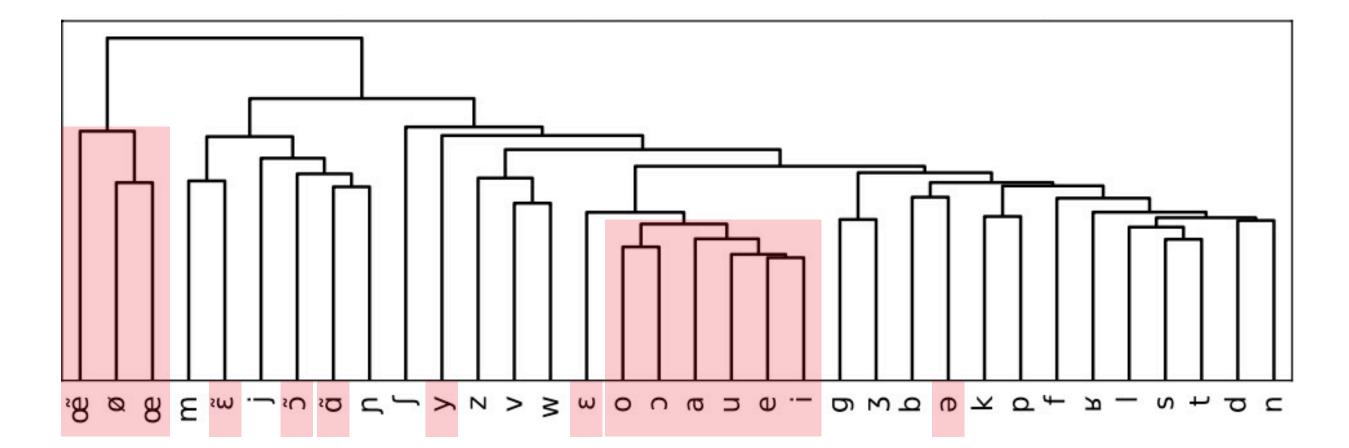
GRU-DPD-BST

GRU-BST

Hierarchical Clustering of Phoneme Embeddings: French

Hierarchical clustering of French phoneme embeddings obtained from the best run (within dataset seed 1 of 10% labeling setting) in the best DPD-based strategyarchitecture combination (top) and the best run from their non-DPD counterpart (bottom).



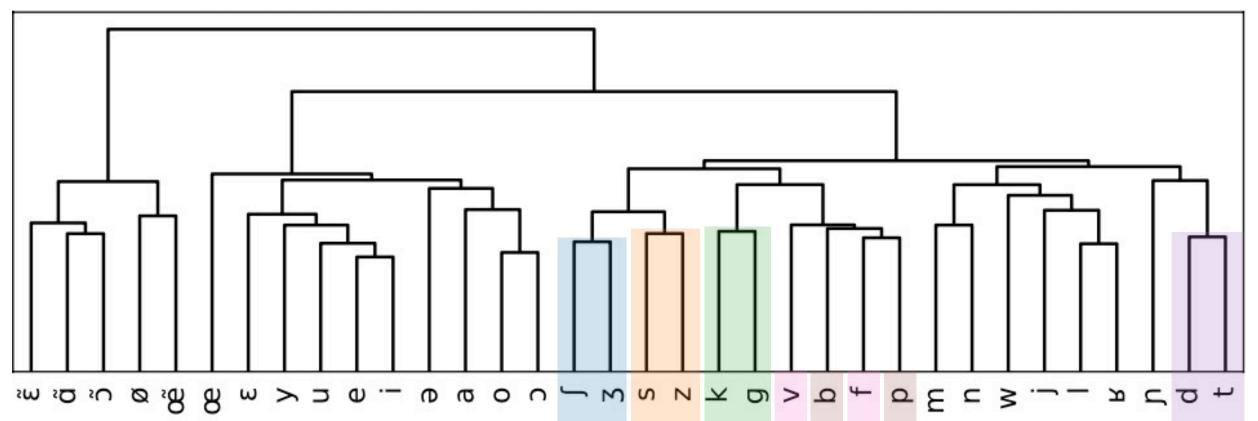


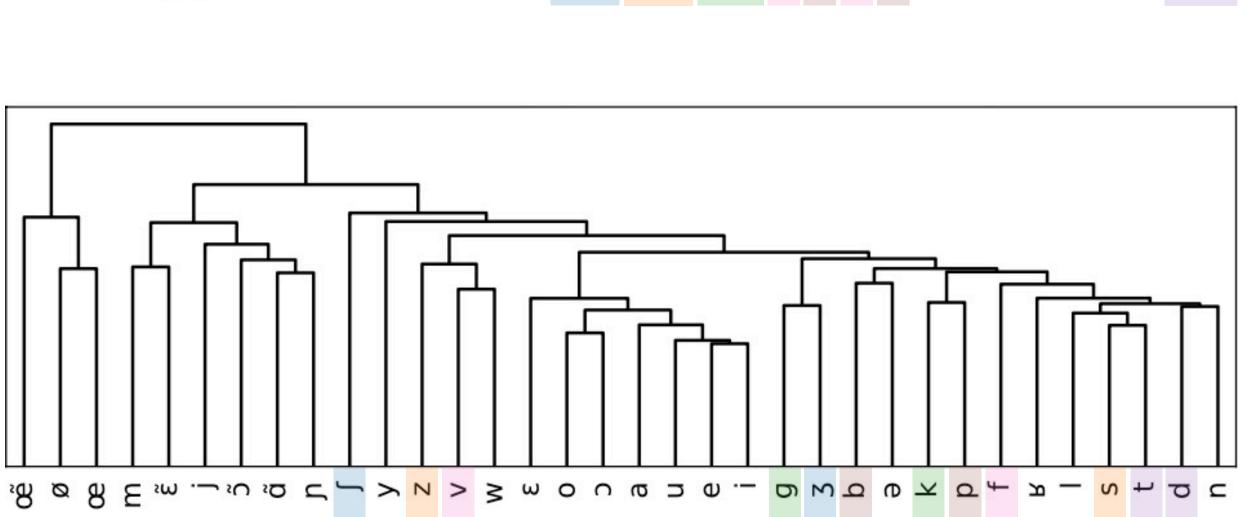
GRU-DPD-BST

GRU-BST

Hierarchical Clustering of Phoneme Embeddings: French

Hierarchical clustering of French phoneme embeddings obtained from the best run (within dataset seed 1 of 10% labeling setting) in the best DPD-based strategyarchitecture combination (top) and the best run from their non-DPD counterpart (bottom).

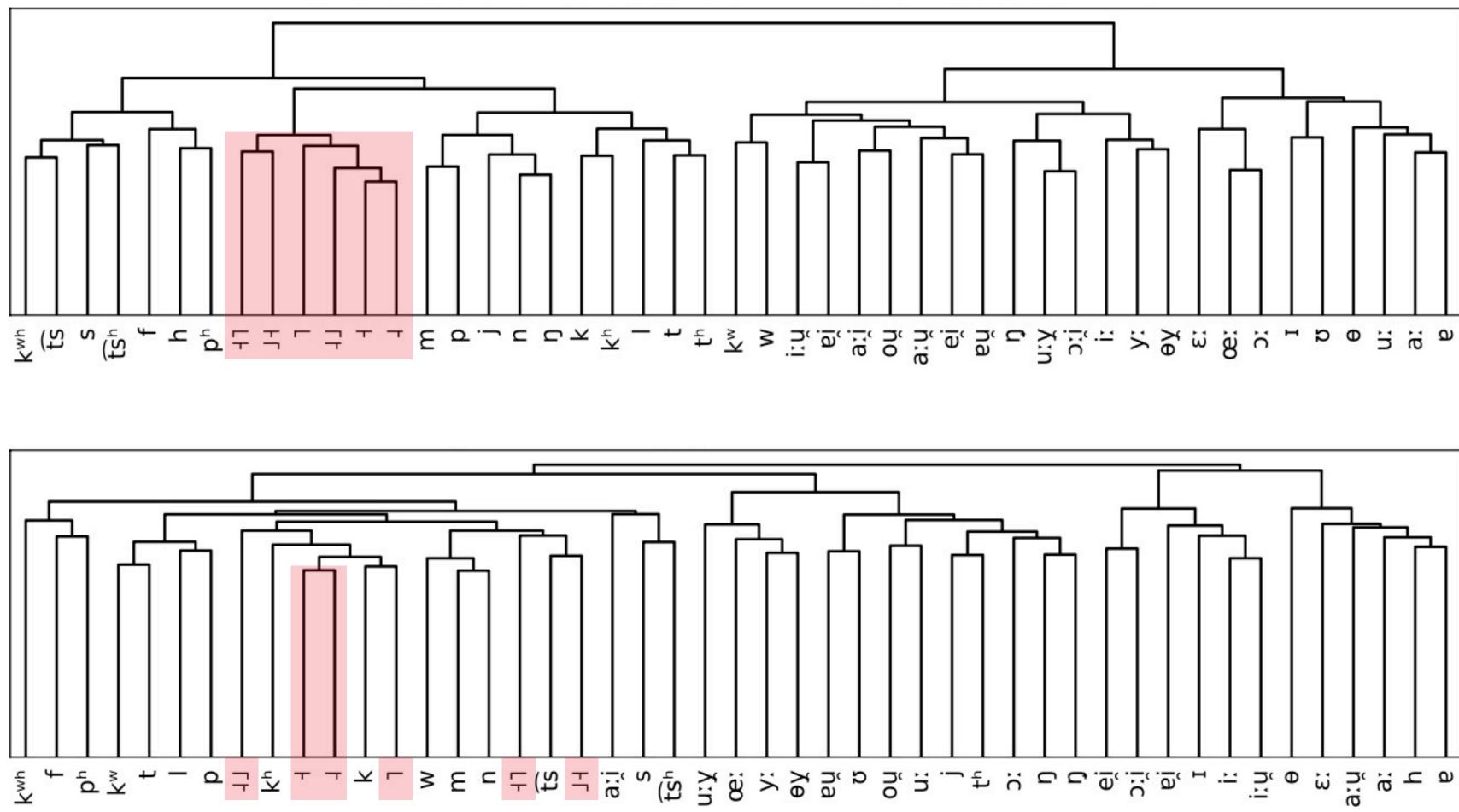


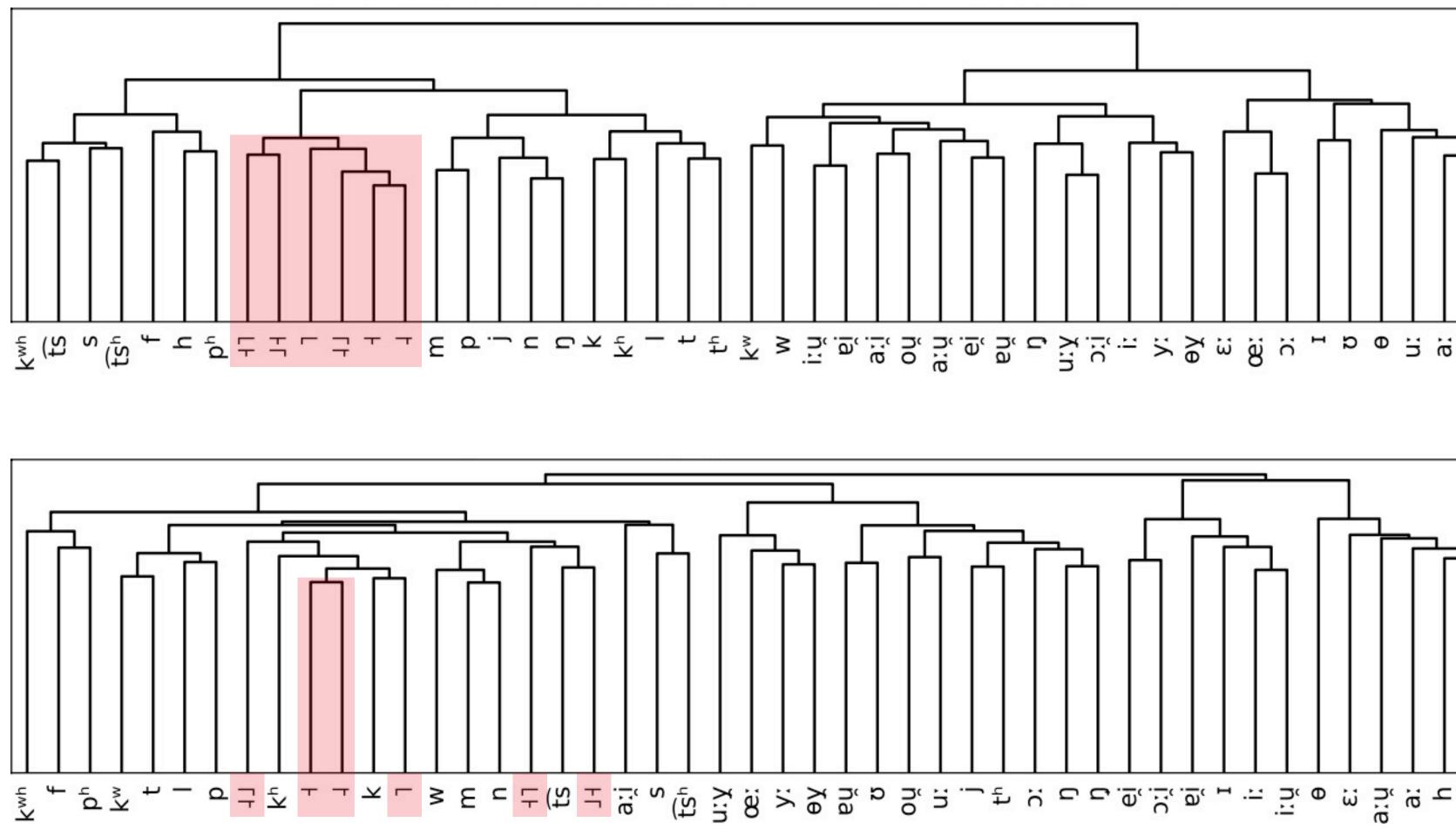


GRU-BST

Hierarchical **Clustering of** Phoneme **Embeddings:** Cantonese

Hierarchical clustering of Cantonese phoneme embeddings obtained from the best run (within dataset seed 1 of 10% labeling setting) in the best DPD-based strategyarchitecture combination (top) and the best run from their non-DPD counterpart (bottom).





Trans-DPD-ΠM-BST

Trans-ПM-BST

Additional Analyses (See Paper)

- The interaction between D2P and P2D during training
- The error patterns of DPD-based vs. non-DPD-based models
- Transductive evaluation of reconstruction performance
- Ablation studies removing the unlabeled data
- Generalizing DPD to supervised reconstruction

Conclusion

We **introduce the new task of semisupervised reconstruction**, marking a step forward toward **building practical computational reconstruction systems** that can assist early-stage proto-language reconstruction projects.

We design the DPD architecture to implement historical linguists' comparative method and learn effectively from unlabeled cognate sets, yielding performance that surpasses existing sequence-to-sequence reconstruction models and established semisupervised learning techniques, especially when protoform labels are scarce.

58 ACL 2024 Semisupervised Neural Proto-Language Reconstruction

Paper: https://github.com/cmu-llab/dpd Code: https://huggingface.co/chaosarium/dpd Checkpoints:

https://arxiv.org/abs/2406.05930 (or conference site)

References

References

- Leonard Adolphs, Tianyu Gao, Jing Xu, Kurt Shuster, Sainbayar Sukhbaatar, and Jason Weston. 2022. The CRINGE Loss: Learning what language not to model.
- V. S. D. S. Mahesh Akavarapu and Arnab Bhattacharya. 2023. Cognate Transformer for Automated Phonological Reconstruction and Cognate Reflex Prediction. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 6852-6862.
- Enrique Amigó, Julio Gonzalo, Javier Artiles, and Felisa Verdejo. 2009. A comparison of extrinsic clustering evaluation metrics based on formal constraints. Information retrieval, 12:461-486.
- Aryaman Arora, Adam Farris, Samopriya Basu, and Suresh Kolichala. 2023. Jambu: A historical linguistic database for South Asian languages. In Proceedings of the 20th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 68–77, Toronto, Canada. Association for Computational Linguistics.
- Siddhant Arora, Siddharth Dalmia, Brian Yan, Florian Metze, Alan W. Black, and Shinji Watanabe. 2022. Token-level Sequence Labeling for Spoken Language Understanding using Compositional Endto-End Models.
- Lukas Biewald. 2020. Experiment tracking with weights and biases.
- Timotheus A. Bodt and Johann-Mattis List. 2022. Reflex prediction: A case study of Western Kho-Bwa. Diachronica, 39(1):1-38.
- Alexandre Bouchard-Côté, Thomas L. Griffiths, and Dan Klein. 2009. Improved Reconstruction of Protolanguage Word Forms. In Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pages 65–73, Boulder, Colorado. Association for Computational Linguistics.
- Alexandre Bouchard-Côté, David Hall, Thomas L. Griffiths, and Dan Klein. 2013. Automated reconstruction of ancient languages using probabilistic models of sound change. Proceedings of the National Academy of Sciences, 110(11):4224-4229.
- Alexandre Bouchard-Côté, Percy Liang, Thomas Griffiths, and Dan Klein. 2007a. A Probabilistic Approach to Diachronic Phonology. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLPCoNLL), pages 887–896, Prague, Czech Republic. Association for Computational Linguistics.
- Alexandre Bouchard-Côté, Percy S Liang, Dan Klein, and Thomas Griffiths. 2007b. A Probabilistic Approach to Language Change. In Advances in Neural Information Processing Systems, volume 20. Curran Associates, Inc.
- L. Campbell. 2021. Historical Linguistics: An Introduction. Edinburgh University Press.

- Chundra Cathcart and Taraka Rama. 2020. Disentangling dialects: neural approach to Indo-Aryan historical phonology and subgrouping. In Proceedings of the 24th Conference on Computational Natural Language Learning, pages 620-630, On Association for Computational Linguistics.
- Kalvin Chang, Chenxuan Cui, Youngmin Kim, and David R. Mortens 2022. WikiHan: A New Comparative Dataset for Chinese Langua In Proceedings of the 29th International Conference on Computational Linguistics, pages 3563-3569, Gyeongju, Repub Korea. International Committee on Computational Linguistics.
- Yong Cheng, Wei Xu, Zhongjun He, Wei He, Hua Wu, Maosong Sun Yang Liu. 2016. SemiSupervised Learning for Neural Machine Translation. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pape pages 1965–1974, Berlin, Germany. Association for Computation Linguistics.
- Alina Maria Ciobanu and Liviu P. Dinu, 2018, Ab Initio: Automatic La Proto-word Reconstruction. In Proceedings of the 27th Internati Conference on Computational Linguistics, pages 1604–1614, Sa Fe, New Mexico, USA. Association for Computational Linguistics
- Alina Maria Ciobanu, Liviu P. Dinu, and Laurentiu Zoicas. 2020. Automatic Reconstruction of Missing Romanian Cognates and Unattested Latin Words. In Proceedings of the Twelfth Language Resources and Evaluation Conference, pages 3226–3231, Marse France. European Language Resources Association.
- Chenxuan Cui, Ying Chen, Qinxin Wang, and David R Mortensen. N Proto-Language Reconstruction.
- Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. 2018. Understanding Back-Translation at Scale. In Proceedings of the Conference on Empirical Methods in Natural Language Process pages 489–500, Brussels, Belgium. Association for Computation Linguistics.
- Clémentine Fourrier. 2022. Neural Approaches to Historical Word Reconstruction. Ph.D. thesis, Université PSL (Paris Sciences & Lettres).
- Clémentine Fourrier and Benoît Sagot. 2022. Probing multilingual cognate prediction models. In Findings of the Association for Computational Linguistics: ACL 2022, pages 3786-3801.
- Çaglar Gülçehre, Orhan Firat, Kelvin Xu, Kyunghyun Cho, Loïc Barr Huei-Chi Lin, Fethi Bougares, Holger Schwenk, and Yoshua Beng 2015. On Using Monolingual Corpora in Neural Machine Translat ArXiv
- Andre He, Nicholas Tomlin, and Dan Klein. 2023. Neural Unsupervis Reconstruction of Protolanguage Word Forms. In Proceedings of 61st Annual Meeting of the Association for Computational

62

A	Linguistics (Volume 1: Long Papers), pages 1636– 1649, Toronto, Canada. Association for Computational Linguistics.
nline. sen. ages.	Wilbert Heeringa and Brian Joseph. 2007. The Relative Divergence of Dutch Dialect Pronunciations from their Common Source: An Exploratory Study. In Proceedings of Ninth Meeting of the ACL Special Interest Group in Computational Morphology and Phonology, pages 31–39, Prague, Czech Republic. Association for Computational Linguistics.
olic of 1, and	Young Min Kim, Kalvin Chang, Chenxuan Cui, and David R. Mortensen. 2023. Transformed Protoform Reconstruction. In Proceedings of the 61st Annual Meeting of the Association for Computational
ers),	Linguistics (Volume 2: Short Papers), pages 24– 38, Toronto, Canada. Association for Computational Linguistics.
nal	Samuli Laine and Timo Aila. 2017. Temporal Ensembling for Semi- Supervised Learning.
atin ional	Dong-Hyun Lee. 2013. Pseudo-Label : The Simple and Efficient Semi- Supervised Learning Method for Deep Neural Networks.
inta s.	Vladimir I. Levenshtein. 1966. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet Physics Doklady, volume 10, pages 707–710. Soviet Union.
e	Johann-Mattis List. 2019. Beyond edit distances: Comparing linguistic reconstruction systems. Theoretical Linguistics, 45(3-4):247–258.
eille,	Johann-Mattis List and Robert Forkel. 2021. LingPy. A Python Library for Historical Linguistics. Zenodo.
leural 2018 ing,	Johann-Mattis List, Robert Forkel, and Nathan Hill. 2022. A New Framework for Fast Automated Phonological Reconstruction Using Trimmed Alignments and Sound Correspondence Patterns. In Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pages 89–96, Dublin, Ireland. Association for Computational Linguistics.
nal	Yucen Luo, Jun Zhu, Mengxi Li, Yong Ren, and Bo Zhang. 2018. Smooth Neighbors on Teacher Graphs for Semi-Supervised Learning. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8896–8905.
	Clayton Marr and David Mortensen. 2023. Largescale computerized forward reconstruction yields new perspectives in French diachronic phonology. Diachronica, 40(2):238–285.
ault, gio. tion. sed of the	Clayton Marr and David R. Mortensen. 2020. Computerized Forward Reconstruction for Analysis in Diachronic Phonology, and Latin to French Reflex Prediction. In Proceedings of LT4HALA 2020 1st Workshop on Language Technologies for Historical and Ancient Languages, pages 28–36, Marseille, France. European Language Resources Association (ELRA).
	Carlo Meloni, Shauli Ravfogel, and Yoav Goldberg. 2021. Ab Antiquo: Neural Proto-language Reconstruction. In Proceedings of the 2021

Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 4460-4473, Online. Association for Computational Linguistics.

David R. Mortensen, Patrick Littell, Akash Bharadwaj, Kartik Goyal, Chris Dyer, and Lori Levin. 2016. PanPhon: A Resource for Mapping IPA Segments to Articulatory Feature Vectors. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pages 3475-3484, Osaka, Japan. The COLING 2016 Organizing Committee.

Yassine Ouali, Céline Hudelot, and Myriam Tami. 2020. An Overview of Deep Semi-Supervised Learning.

Michael Saxon, Samridhi Choudhary, Joseph P. McKenna, and Athanasios Mouchtaris. 2021. Endto-End Spoken Language Understanding for Generalized Voice Assistants. In Interspeech 2021, pages 4738-4742.

- Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Improving Neural Machine Translation Models with Monolingual Data.
- Siva Sivaganesan. 1994. An Introduction to the Bootstrap (Bradley Efron and Robert J. Tibshirani). SIAM Review, 36(4):677-678.
- Ivan Skorokhodov, Anton Rykachevskiy, Dmitry Emelyanenko, Sergey Slotin, and Anton Ponkratov. 2018. Semi-Supervised Neural Machine Translation with Language Models. In Proceedings of the AMTA 2018 Workshop on Technologies for MT of Low Resource Languages (LoResMT 2018), pages 37–44, Boston, MA. Association for Machine Translation in the Americas.
- Szemerényi, O. J. L. (1996). Introduction to Indo-European Linguistics. Oxford University Press UK.
- Kuen-Han Tsai and Hsuan-Tien Lin. 2019. Learning from Label Proportions with Consistency Regularization. ArXiv.
- Joe H. Ward, Jr. 1963. Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58(301):236-244.

Frank Wilcoxon. 1992. Ranking Methods. pages 196–202.