
Thee I

#Philosophy of class

1. Congetation in catered o precion.functional

Imperative: this
states that changex: = 5

I Functbral: evaluation

as have + Problem statement• Think wath tical

4 specifications
Is Proof of correctness

Paralledism

- Work -total man of operations rucking on
one process sequentially

- Span-running,time on
longest critical path leugth

processors.

Expressions
(344)42= 7*2

= 14

"hello " "world"
" 'hello world"

7 * (1+1)
7 * 2
14

(3+4) *1+1)
7 * 2

I + "world"
A Type enor

tupe coession
is bold idea?

4 Invariants

314-37

Paralle

Num of steps

JIN 3 14

#Type checking!
'Certainty the most impartant concept in Mr.
*MI type checks first. Only compiles when passes
Eg.
(574) *I: it"w'a "d' string

It "world no type , "Ill typed"
7- "well-typed" Not even worth talking about.Don't evaluate

They dons make sense. Don't consider

Type:s prediction of the former of fatime value, of we ever get one.
* Every well-formed expression:

- Has a type
May have a value

- May cause an effect a eg. privet may evanuate to value
We wite:

(3+4) *(1+1) : ut
2> 14

Type check and run

ester int if er int and es: int
* We do aping "statecally

- but we run to get value, that's "dynamice"

Some types

Base types:

Composite: products
functions
datatupes «

will defueI these later

e:t
a s u

int
real
bod

char
string

Evaluation rules
if e.

in. + es » n, + ei if ex
6 final evaluation

e, +ex = el tea fore crap of endiaton
G evaluated 5 div o

type check:
run

sdivo: int
Div exceptionhi the ani

ero if e so and u is value
Extensional Equialence (eeg)

a reduce as much as possible.
where is erte,

They ever.

Def of I is type-dependent
for most tupes eases if:

they have same type
- they eval to same

to same value, they are eeg!

I A function isn't like this

"value

they raise same exceptionOR
they both loop

For functions, eeg if:
• same tupe
- eeg resült given eeg angüment.

Product type
name: tittz
vale (V,, v2)

les. er)
(H,, #2)

typing mule: les, ex): the ta if exit, and exits
evamation: left to right

a some deprecated thing

all good
Ex.

3, = ex

Uhoh

1+243 0+343

Write 14 2 = 0+3

expressions:

Ex.
(5 divo, 2+1) : int * int

(84 'helle, falees ill typed: CDon't even eval.
(2, (onue, "a")):

(оти оне поко, питому совітий - стано
int * (bod is string)

I Net same

Functions

It square: int s int
REQ: true
ENS: square (X) evals to xxx#)

fun square (X: int): int = *
Indicates "'I bound to x"# Binding

val ximt =1
val

Local binding
val x: int =1

let val k: int =10 * This is one expression

We don't "change" binding.
Old one "shadowed"

looks Or

LI/x]
22/ y]

in
end

val

X+10
and
4>20.

y:unt = r

