
Tec 2
Exceptions are not considered values

- Regarding equal ign- Binding
-Operators

x: ut = 3

Local Binding
still binds to this! I Candidate answers:val k: int =3

fun fly:int) iint-y*E
val x: unt =300

I= Dees not refer to bindingwhen called.

ability to figure what st refers to
just by looking at code.

meaning of variable same as when it
was when function is defued

let

- 6
- 600 X

end

* Static scope

ie.

#Closures

* Code part:fn (y: int) a
* Emironment part ya*

whale thingtO

A function
* Code part:

th (y: int) @y*x
* Environment part"[3/x]

Shadowing:[300/×]
Doesn't change what's
already there'

Gwen
[3/x]binding

A closure

We get:

[3/x]

Function Types

A function...

* пате
* value
* expressions fn (xit,) = body

Ways to define function.
* Declaration
* As expression

Typing Rules
fn (X: ti) =body

Not required but do it to learn.
f(x:int): int =x

fn (xiint) =x

This is true if:
body:tr assumingX: t.
ie output is that type asswing input type

Evaluation Rules

fu (xit) a body « A This function is a value!we don't even evaluate it!
It's already a value

testa
closure

fun
val f=

:tr = tr

Consider:

Function Axplication
ea

I in which this could be a function
en es: ta if:
ei: to=ta- ez: ti

Steps to evaluate
Consider:e, ez
1. Evalnate e, to obtam a function

fu x» body
2. Evaluate ez do obtain
3. Extend environment TENVI with Tv/x]

fn x » book
C ... ENV. v/x

4. Evalue body using using new environment

Just e.

Then

CENVI

val pi: real = 3.14
fun area (r:real): real =piker dr
area (2.1 +1.9)
= I3.14 /pit (fn re pitrar) (2.1+1.9)
= I3.14 /pig (fmr » pier*r) 4.0
= I3.14 /pi, 4.0/r](fnr » pitr*r)

L Extended ENV.
= I3.14 /pi, 4.0/r](pixer*r)

ENV no longer weeded. I sill in area's binding though)

val pi: read = 0.0 Didn't change the pi' that's in 'area'
area C2.1 + 1.9) L 50. whatever

50. whatever

Recursion

Factorial in math:
fact (0) =1fact (h)=n x fact (nal) for noo

Pattern Matching
(* fact: int

REQUIRES:
ENSURES:

n>0
fact (n) = n! ReguinedspeesI this course

fact (0: int): intfact In: int): int
Must use fun form for the

§ recursive referenung
h a fact (r-1)

omit since already written Can't try to match
against other typesMI will try to match from top to bettom.

To test:
val 720 = fact 6

to try match fact 6 to 120.

- int

it)
fun1 11 d

Typing Rule
fun ff

1 f
pattern, =
pattern 2 =
pattern 3 =

f: to sta if
patterns match t.

See compiler errors..

Patterns

0.
i patt?" patt2)

I val (kir) = (5,2.0)

* variable
* constants
* duple
* wildcard

x, у....2, "hello'
match

Cent matchanything for math reason
matches anything without ereating birding

el
e2
e3

- all
- all

€

Fibbonacci example
(* fibb: int - int # intREQ n=0
* >
fum fibb (0: int): int tint = (1,0)

1 fibb

val (21,
Case statement

(Case e

val (aint, b:int) = fibb (n -1)
latb.a)

type consistency:of
padt i - e
I pat12 - ez

Can't match for
unspefiedtype

'pattle »ex je Always put is!
Note that

'type consistency!

if b then e, else ea
(case b of

ENS

letin
end

(A
sence

true
I else

e.

fun examde (y: int) int
(Case (square ×

sar sqr -1
|-** sor

type check

More on

CoN and en coo
= er
se re,»e

But
. er = ex * eiderv erse.

On totality
if f: int sint is total

fil) + fe2) = f(2) + fin
If not total, they could raise different exception.

)

× SO
Are
false

~

• e.• e.
•e. =

e. =ez
enter
e.=ez

then

