Lee 3 Recursion and Induction

* Higher order function - function that takes function as arg

Example omitted
\# Comprising Exponent
G_{*} power : int $*$ int \rightarrow int
REQ : $k \geqslant 0$
ENS : power $(n, k)=n^{k}$
*) \leftharpoondown Not using it
(1) fun power (_: int, 0 : int): int $=1$ (assume $0^{\circ}=1$)

1 power (n : int, $k:$ int): int $=n *$ power $(n, k-1)$

* power is not total - it can't take $k<0$.

$$
\text { power }(3.6) \cong \frac{3 * 3 * 3 * 3 * 3 * 3 * 1 \cong 729 .}{O(k)}
$$

Can we make ot faster?
(2) fun power (_: int, $0:$ int): int $=1$

1 power $(n, k)=$
if $k \% 2=0$ then
square (power $(n, k \operatorname{div} 2)$
else n* power $(n, k-1)$
power $\frac{(3,7) \cong 3 \cdot\left(3 \cdot(3 \cdot 1)^{2}\right)^{2}}{O(\log k)} \cong 2187$

* Proving this works

Theorem : (1) satisfies its specs ie.

$$
\forall n, k \in \mathbb{Z} \text { with } k \geqslant 0 \text {, power }(n, k) \longrightarrow n^{k}
$$

Proof by induction on $\mathbf{k} \leqslant$ pick the one that decreases
τ standard induction

Base case when $k=0$

Inductive case

WTS power $(n, 0) \rightarrow n^{0}$
Showing: \checkmark steps to, could be expression

$$
\begin{array}{rlr}
\text { power }(n, 0) & \Rightarrow 1 & {\left[1^{\text {st }} \text { clause of power }\right]} \\
& \Rightarrow n^{0} & {[\text { math }]}
\end{array}
$$

IN: $\operatorname{power}(n, k) \hookrightarrow n^{k}$ for any n
WTS power $(n, k+1) \rightarrow n^{k+1}$ for any n
Showing:

$$
\begin{aligned}
\text { power }(n, k+1) & \Rightarrow n^{*} \text { power }(n, k) & & {\left[2^{\text {nd }} \text { clause of power since } k+1 \neq 0\right] } \\
& \Rightarrow n^{*} n^{k} & & {[I H] } \\
& \Rightarrow n^{k+1} & & {[\text { math }] }
\end{aligned}
$$

Theorem 2: (2) satisfies its specs ie.
$\forall n, k \in \mathbb{Z}$ with $k \geqslant 0$, power $(n, k) \longrightarrow n^{k}$
Proof by ** strong** induction on k τ aka second principle (?)

Base case when $k=0$

WTS power $(n, 0) \rightarrow n^{0}$
Showing:

$$
\operatorname{power}(n, 0) \Rightarrow 1
$$

\leftarrow Same stuff

$$
\Rightarrow n^{\circ}
$$

Inductive case Assume $k>0$
IH: for all $0 \leqslant k^{\prime}<k$, for any n, power $\left(n, k^{\prime}\right) \hookrightarrow n^{k^{\prime}}$ WTS: power $(n, k) \hookrightarrow n^{k}$ for any n

Showing:
power $(n, k) \Rightarrow$ if $k \% 2=0$ then square $(\operatorname{power}(n, k \operatorname{div} 2)$ else $n *$ power $(n, k-1)$
CASE $k \% 2 \cong 0$:

$$
\begin{aligned}
\operatorname{power}(n, k) & \Rightarrow \text { square }(\text { power }(n, k \text { div } 2)) & & {[k \% 2=0] } \\
& \Rightarrow \text { square }\left(n^{k \operatorname{div} 2}\right) & & {[I H \text { and } k>0] } \\
& \Rightarrow n^{k} \operatorname{div} 2^{2} n^{k \operatorname{div} 2} \text { being sloppy } & & I \text { def of square }] \\
& \Rightarrow n^{k} & &
\end{aligned}
$$

CASE 2 $k \% 2 \neq 0$:
[omilled]
\# Some ML Syntax (Data Serneture)

* Lists
name t list
values $\left[v_{1}, \ldots, v_{n}\right]$ where $v_{1}, \ldots, v_{n}: t, n \geqslant 0 \approx$ write [] for empty or "nil"
Expressions: all values e :: es

$$
1::[2,3]=[1,2,3]=1: 2: 3::[]
$$

Typing.
[] : t list
$e:$ es : t list if $e: t$ and es: t list

Evaluation: left \rightarrow right
\# Structural Induction

- dealing with non-number stuff in induction

Consider:
C* length : int list \rightarrow int
REQ : true
ENS: length of list
*)
fun length ([]: int list) : int $=0$
1 length (_ ::xs $)=1+$ length $x s$
But how do we prove this is correct?
Ham ... but let's prove it's total.
Theorem: length is total for any value L :int list, length $L \hookrightarrow 0$ for some v
Proof by structural on L.
$\begin{array}{ll}\text { Base case } & \text { WTS length }[] \rightarrow v \\ L=[] & \text { Showing: length }[J \Rightarrow\end{array}$
Showing. length []$\Rightarrow 0$ [clause 1 of length]
Inductive case Let $L=x: x$ s with x int and x : int list
IH: length $x s \leftrightarrow v$ for some v
WTS: length $(x: x s) \rightarrow v^{\prime}$ for some v^{\prime}
showing: length ($x: x s$) $\Rightarrow 1+$ length $x s$
[clause 2 of length]

$$
\Rightarrow 1+v
$$

$$
\begin{aligned}
& \Rightarrow 1+2 \\
& \Rightarrow 1+v
\end{aligned}
$$

[math]
let $v^{\prime}=1+v$

