
[Lec4 Tail Recursion?
*Problem with non-tail recursion.

Consider I1, 2,3,47

leugth 51, 2,3,47 = 1+length [2, 3,4]
It lit length 23, 43)

Gets very long!
In fact unnecessarily long1 +1417 leneth (4]))

1 *'++ (+ lenath (7)))++ (14(11(1405))
Time O(n).
Space OCn).

actual space used

/garbagion

* Save space a less garbage collection > faster run ture
gets space
longer necessary

* Here comes tail recursion
5 accumulatorI* Herath: int list as inde's listREd: trie I Notice it doesn't;

ENS: tength (L, ace) a lengthCh) +ack
just take a list

* "Tail recursive " A:
- It's recursive

All recursive calls are tail calls

fun tength (II: wat list, acc: int?: in = acc
" I tlerath C_- iNs, ace) = , tength (xSe

fun length (I: int list) = length (1, 03.
length' 11, 2,3,413 tength (21, 2,3,43,0) " Time ours

tlength (22,3,47, 1) Space OCI)

(+ acc),
Tail call: recursive call not adding amything

=
• 3

space

4 - execution

Prove that theugth works correctly

Therrease: Te. int list, acciust, thengsh (h, alc) is leugth (LIt acc
Prof by structural induction on L.
Base case. When L=II

Wis tengshich, aco) a leugth (12) race for any ac.
tength (11, acc) = acc
leugth (lI) + acc =

so tength (11, ace) = laugh (17) + ace

Let Lax:xs for values
IH: tength (xs, acc') = length (X) + ace'
Wis: tength (xixs, acc) = length (X:: as) + ace

O + acc
acc

I by clause I of thength I

Eby claws' of leugth I

* Reduction is equivalence

Vacc'
Vacc

Ah (xs, I+acc)

=is symmetric

pus is total.

since (= (1 + length (x5)) + acc
' = length (xixs) + acc

Lby clause a of thength?
Iby IH with acc'= Hacc I

I Exonession, not udue butcan treat it as value for = proof
and since length is total

I'by math]
Iby clause 2 of length;

Inductive
case.

y math y

Example

It append int list it int list = int list *)
fun append (I I: int list, Y: int list); int list =Y? Time: OClength of yet list)

Y) = *i append (XS, y)append (X: xS,
I reverse function

int list int List o)
rev (II int list J: int list = I7 I Time. Olnz). Bad.

append + Ollen of list before it)(xi: xS) = reu aS @ [x]

int list a int list - int list
tre
trev (L, acc) & rev (1)@acc

fur tree III. it list, ace int list is it list ; aceacc) =
list): int list = trew(h, [J)

Theorem: Hualues L,ace: int list, treat, ace) i reult) @acc
Erast by structural induction on L.
Base case. WIS: tres (II, ack) & rev (III @ acc Vacc

tres (II, acc) = acc

I trev (Xiixs,
fur rev' (L: int - Now time O(n)

= I1@acc I append 11= rev(I1) @acc I rev 17

C*
fun

rev

rev

C* trev
REG:
ENS:

#)

Inductive case. Let L = x:Xs for values XXs
IH: tres (xs, acc') a new is @acc Vacc'
WIs: trew(xiixs. acc)@red new (xix5)@acc

tres (x: xs, acc) # tres (xs, X" acc)
= rev as @ (x: acc)

will get.posted

Face

I trey 23
LIH]

