
Lec 5. Datatypes

* Giving name to type

* Defuing пего type
Say we want a

type point = int #int

enum s
less Than
equal

' int? works, but possible to have errors
datatype onder = LESS I EQUALI GREATER *

Convertion isto capitalise or
all caps

§ greater Than
Buit in comparison dready does this.

Int. compare: int a int > order
lease Int. compare (x, y) of

1.
'constructers". they are valus of type order!

LESS: order

we cam also use these for pattern matching

, bod = rue
LESS =

I EQUAL »
I GREATER

build in does this

Different type same

type point: int t int Itype point int # int

A Beware this

Nothing , much datatype onder = ...
happens, Still datotype ander =same type

I Two 'onder'" but diferent

datalype I fake

)

name?

(* listmin int list » 2
?: » int? what if

* something like
listmin (I]) ... uh oh
Option <32>? Yes!

5 extended integer
datatype extinct = Postuf I Neginf I Finite of int

listmin (I J: int list) ' extint = Postuf

as of
listmin (xixs) =
(case listmin

• Finite &
Finite (Intmin (K,y))

)

So:
PosIve: extint
Neglup: extint.
Finite 12: extint

this constructeran inticarries

Consider:
fun

we say this whole thing is a valueint = extinct
this is a function instead.

listmin (I J: int list)' extint = PosInf
listmin (xixs) =
(case listmin

PosInff:5 then compiler thinks this is variablename so it matches everything.
Finite y » Finite (Intmin (x, y))

Neginf

* Foreshadourng

Consider

fun
1

PosInf
1 Finite y
1 Neginf

Not
« Function

• NegInf
Finite,Finite:

1

as of
Finite *|

1

datatype thee =Euply of thee wint is thee
Ex.

Node (Empty, I, Node (Empty, 2, Empty»

Depth of tee
Not really good contrad to proveIt depth tree is int te)

fun depth (Empty: tree) = O
(Node (t1, 7, 42)) = I+ Intimax (depth tI, depth +2)depth

Theorem: depth is total
Structural induction on T

* total: for amy value
T: t ree, depth Thou
for some

(BC) T-Empty.
Well, depth T». I clause I of depth I
Coose v=O. then depth taw as required
T= Node (tr,
depth to law.

x, tz) for some to: tree, sient, to tree
and depth to wave for some value vi, us.

depth T way for some value o

depth T = It Intiman (depth to, depth th) I clause 2 of depth I

Choose ~= I+k

Int mar (V, Iby IHI
I Intmax total I

Trees

on T.

(IC)
(IH)
(WIS)

It
It k

Va)

I More tree

dadatype

I with all data at leaf)

It flatten: treefun

Leaf of int
Node of thee a tree
int list s)

bad performance... OCh'=) worst case
(Node (tr, t2))

Its flatten a: tree a int list -s int list
ENS: tie

[x]
(flatten til @ (flatten to)

REQ: flatten 2 (T, acc) a flatten T@ acc*)
fun flatten a (Leaf (x): tree, acc: int list): int list

1 flatten 2 C Node (+ , , +=) flatten 2(tr, flatten 2 (ta , acc))
A tail call

A Not tail recursive!
Not tail call!

tree ;

1

= X:: alC

