Lee 6 Asymptotic Complexity

* Big O notation refresher [partially omitted]

Suppose $f, g: \mathbb{N} \rightarrow \mathbb{R}^{+}$
$f(n) \in O(g(n))$ if $\exists_{c \in \mathbb{R}}, N \in \mathbb{N}, \forall n>N, f(n) \leqslant c g(n)$

Aside:
Ω is lower bound is both bounds

Complexity clares...
$O(1), O(\log n), O(n), O(n \log n), O\left(n^{2}\right), O\left(2^{n}\right), \ldots$

* Append complexity
fun append $([], Y)=Y$
$1 \operatorname{append}(x: x s, Y)=x:: \operatorname{append}(x s, Y)$
W_{1} append (n, m) where m, n are length of inputs
"Work"
Cases (for each clause)

$$
\begin{aligned}
& \text { ares (for each clause) } \\
& \left.{\text { Wappend }(0, m)=c_{0}}^{W_{\text {append }}(n, m)=c_{1}+W_{\text {append }}(n-1, m)}\right]^{\text {lodes like an inductive proof... bot complicated }} \text { (for all } m \text { and some } c_{0} \text {) } \\
& \text { (for } n>0 \text { and } \ldots \text {) }
\end{aligned}
$$

Unrolling method \uparrow easier way. typically we do this

$$
\begin{aligned}
& =c_{1}+c_{1}+W_{\text {append }}(n-2, m) \\
& =k c_{1}+W_{\text {append }}(n-k, m) \\
& =n c_{1}+c_{0} \\
& \in O(n)
\end{aligned}
$$

\# Reverse using unrolling \leftarrow good when only one recursive call

Bad one

```
fun rev []\(=[]\)
    \(1 \operatorname{rev}(x: x s)=\operatorname{rev} x s @[x]\)
\(W_{\text {rev }}(n)\) where \(n\) is length of input
\(\omega_{\text {rev }}(0)=c_{0} \quad\left\{\begin{array}{l}\text { Note were using lemma about " } \\ \text { input and ouput size. }\end{array}\right.\)
\(W_{\text {rev }}(n)=c_{1}+W_{\text {rev }}(n-1)+W_{\text {append }}(n-1,1) \quad n>0\)
        \(\leqslant c_{1}+W_{\text {rev }}(n-1)+c_{2} n\) replacing with asymptotic bound
        \(\leqslant c_{1}+c_{2 n}+w_{\text {rad }}(n-1)\)
Unroll! \(\leqslant c_{1}+c_{2 n}+c_{1}+c_{2}(n-1)+w_{\text {rev }}(n-2)\)
    \(\leqslant c_{1}+c_{2 n}+c_{1}+c_{2}(n-1)+c_{1}+c_{2}(n-2)+w_{\text {rev }}(n-3)\)
    \(\cdots \leqslant c_{0}+n c_{1}+c_{2}\left(\frac{n(n+1)}{2}\right)\)
    \(\in O\left(n^{2}\right)\)
```


Tail recursive rev

fun $\operatorname{trev}([], a c c)=$ acc
1 trev $(x:: x s, a c c)=\operatorname{trev}(x s, x: a c c)$
$W_{\text {tree }}(n, m)$ where m, n are len. of lists
$\omega_{\text {tree }}(0, m)=c_{0}$
$W_{\text {tree }}(n, m)=c_{1}+W_{\text {tree }}(n-1, m+1) \quad(n>0)$

$$
=2 c_{1}+w_{\text {tree }}(n-2, m+2)
$$

$\cdots \in O(n)$
\# Trees A Unrothing may not work as well
datatype tree $=$ Empty 1 Node of tree *int * tree
fun $\operatorname{sum}($ Empty: tree $)=0$
$1 \operatorname{sun}(\operatorname{Node}(l, x, r))=\operatorname{sun} l+\operatorname{sum} r+x$
\square could have been depth, mum leaves, etc.
W sim (n) where n is um. of nodes in input tree.
$\omega_{\text {sum }}(0)=C_{0} \quad$ Uh oh we don't know these All we know is $n_{l}+n_{r}=n-1$

$$
w_{\operatorname{sum}}(n)=W_{\operatorname{sim}}\left(n_{l}\right)+w_{\operatorname{sum}}\left(n_{r}\right)+c_{1}
$$

"The tree method is

* Notice we can run this in parallel. Funding span Sum (n)
$\operatorname{Sum}(0)=C_{0}$
$\operatorname{Simm}_{\operatorname{sim}}(n)=C_{1}+\max \left(S_{\text {sum }}\left(n_{l}\right), S_{\text {sim }}\left(n_{r}\right)\right)$
In this case, we want the longest path .. but that depends on shape of tree.
Worse case: $n_{l}=n-1, n_{r}=0$.
Then $\operatorname{Sum}(n)=c_{1}+\operatorname{Sim}(n-1)<$ dominates

$$
\cdots \in O(n)
$$

\# Balanced tree
:= each subtree have roughly same size
Now suppose roughly:= exactly

$$
\begin{aligned}
S_{\operatorname{smm}}(n) & =c_{1}+\max \left(S_{\operatorname{sum}}\left(\frac{n}{2}\right), S_{\operatorname{sum}}\left(\frac{n}{2}\right)\right) \\
& =c_{1}+S_{\sin }\left(\frac{n}{2}\right) \\
\cdots & =c_{1}+c_{1}+S_{\operatorname{sim}}\left(\frac{n}{4}\right) \\
\cdots & =\log _{2} n c_{1}+c_{0} \\
& \in O(\log n)
\end{aligned}
$$

Now consider size : = depth \checkmark not necessarily bolamed
$S_{\text {sum }}(d)$ where d is depth of tree

$$
\begin{align*}
S_{\text {ami }}(0) & =c_{0} \\
S_{\text {min }}(d) & \left.=c_{1}+\max \left(S_{\text {sum }}(d-1)+S_{\text {min }}\left(d^{\prime}\right)\right)\right) \\
& =c_{1}+S_{\text {sm }}(d-1) \\
\cdots & =d c_{1}+c_{0} \\
& \in O(d)
\end{align*}
$$

Notice depth gives more info about span
\checkmark assuming balanced

$$
w_{\text {cm }}(d)=\cdots \cdots \cdots
$$

Lemma: sum of exponential series is exponential
\# Bad Sorting
(* ins : int * int list \rightarrow int list REQ L sorted
ENS ins $(x, L) \leftrightarrow$ sorted permutation of $x:: L$
*)
fum ins $(x,[])=[x]$
1 ins $(x, y:: y s)=$
(case compare (x, y) of GREATER $\Rightarrow y:=\operatorname{ins}(x, y s)$

$$
)
$$

fun isort []$=[]$
1 sort ($x:: x s$) $=$ ins (x, isort $x s$)

$$
\begin{aligned}
& \text { Wins (} 0 \text {) }=C_{0} \\
& \omega_{\text {ins }}(n)=c_{1}+W_{\text {ins }}(n-1) \quad 1^{\text {st }} \text { clause } \\
& =c_{2} \\
& 2^{\text {nd }} \text { clause } \\
& \leqslant c_{3}+\operatorname{Wins}_{\text {ins }}(n-1) \\
& \in O(n)
\end{aligned}
$$

$$
\begin{aligned}
W_{\text {isort }}(0) & =c_{0} \\
W_{\text {isort }}(n) & =c_{1}+W_{\text {isort }}(n-1)+W_{\text {ins }}(n-1) \\
& \leqslant c_{1}+c_{2}+W_{\text {isort }}(n-1) \\
& \in O\left(n^{2}\right)
\end{aligned}
$$

