Lec 6 Asymptotic Complexity
* Big O notation refresher [partially outilied]
Suppose
$$f,g: N \rightarrow R^{*}$$

 $f(m) \in O(g(m))$ if $\exists c \in R, N \in N. \ \forall n > N. \ f(m) \notin cg(n)$
Complexity classes...
 $O(1), O(\log n), O(n), O(n\log n), O(n^{2}), O(2^{n}), ...$
* Append complexity
fun append $(17, Y) = Y$
1 append $(x:x; K, Y) = X$:: append (xs, Y)
Wappend (n, m) where m, n are length of inputs
"work"
Cases (for each clause)
Wappend $(n, m) = c_{1} + Wappend (n-1, m)$
 $Wappend (n, m) = kc_{1} + Wappend (n-2, m)$
 $= C_{1} + c_{1} + Wappend (n-2, m)$
 $= nC_{1} + c_{1}$

Reverse using murdhing \neq good when only one recursive call Bad one fun rev [] = [] 1 rev (x::xs) = rev xs @ [x] $W_{rev}(n)$ where n is length of input $W_{rev}(n)$ where n is length of input $W_{rev}(n) = c_{0}$ $W_{rev}(n) = c_{1} + W_{rev}(n-1) + W_{append}(n-1, 1)$ $\leq c_{1} + W_{rev}(n-1) + c_{2}n < replacing with asymptotic bound$ $\leq c_{1} + c_{2}n + c_{2}(n-1) + W_{rev}(n-2)$ $\leq c_{1} + c_{2}n + c_{1} + c_{2}(n-2) + W_{rev}(n-3)$ $\leq C_{1} + c_{2}n + c_{1} + c_{2}(n-2) + W_{rev}(n-3)$ $\leq C_{1} + c_{2}n + c_{2}(\frac{n(n+1)}{2})$

```
Tail recursive rev
```

```
fun trev (I], acc) = acc

l trev (x::xs, acc) = trev (xs, x:: acc)

W_{trev} (n, m) where m, n are len. of lists

W_{trev} (0, m) = C_0

W_{trev} (n, m) = C_1 + W_{trev} (n-1, m+1) (n>0)

= 2c, + W_{trev} (n-2, m+2)

\cdots \in O(n)
```

Treees
$$\triangle$$
 Unrolling may not work as well
detabling - tree = Empty | Node of tree * int * tree
fun emm (Empty : tree) = 0
| sum (Node (l, x, r)) = sum l + sum r + x
r could have been depth, num leaves, etc.
Wsum (n) where n is mum. of nodes in imput tree.
Wsum (0) = Co Uh oh we don't know these All we know is $n_l + n_r = n - 1$
Wsum (n) = Wsum (n_l) + Wsum (n_r) + c,
""The tree methods $C_l = C_l$ Total = $nC_l + (n+1)C_0$

* Notice we can run this in parallel. Finding <u>span</u> Ssum (n)

 $Sum (0) = C_0$ $Sum (n) = C_1 + max (S_{sum}(n_\ell), S_{sum}(n_r))$

In this case, we want the longest path ... but that depends on shape of tree.

Worse case: $n_{\ell} = n - 1$, $n_r = 0$. Then $Sum(n) = C_{\ell} + Sum(n-1) \leftarrow dominates$ $\dots \in O(n)$

Balanced thee

:= each subtree have roughly source size L turns out many defor roughly work, ever high tolerand ones Now suppose roughly := exactly Sum(n) = c_1 + max (Securi ($\frac{m}{2}$), Securi ($\frac{m}{2}$)) = c_1 + Securi ($\frac{m}{2}$) ... = c_1 + c_1 + Securi ($\frac{m}{4}$) ... = log_2n c_1 + co E O(log n)


```
# Bad Sorting
 (* ins : int * int list - int list
    REQ L corted
    ENS ins (x, L) (> sorted permutation of x...L
  *)
  fun ins (x, C]) = [x]
    1 ins (x, y :: ys) =
       (case compare (x, y) of
            GREATER => y :: ins (x, ys)
            l_ ⇒ × ...y ... ys
       )
  fun isort [] = []
     1 isort (x = xs) = ins (x, isort xs)
  Wins (O) = Co
                                    1st clause
  Wins (n) = C. + Wins (n-1)
                                    2nd clause
           = C2
          < cs + Wins (n-1)
          E O(n)
  Wisort (0) = Co
  Wisort (n) = C. + Wisort (n-1) + Wins (n-1)
           5 ci + Cn2 + Wisort (n-1)
           \in O(n^2)
```