Lee 10

Recall

$$
\begin{aligned}
& \text { fin add }(x, y)=x+y \\
& {[[](\operatorname{fn}(x, y) \Rightarrow x+y) / \text { add }]}
\end{aligned}
$$

Consider
fur plus $x=f_{n} y \Rightarrow x+y \quad$ plus: int $\rightarrow$ int $\rightarrow$ int

$$
[(f u x \Rightarrow f u y \Rightarrow x+y) / \text { plus }] \text { for next any }
$$

val inc $=$ plus $1 \quad$ inc: int $\rightarrow$ int

$$
\begin{aligned}
& {[[1 / x](\text { fun } y \Rightarrow x+y) / \text { inc }]} \\
& \text { inc } 4 \Rightarrow[1 / x] \text { (fin } y \Rightarrow x+y \text { ) } 4 \\
& \Rightarrow \quad[1 / x, 4 / y](x+y) \\
& \Rightarrow \quad 1+4 \\
& \Rightarrow 5
\end{aligned}
$$

Good compiler usually optimise this, so should be same as add plus 14
plus $14 \Rightarrow[1 / x]$ (fun $y \Rightarrow x+y) 4$
$\rightarrow$ Another way to do function call! plus $14 \cong$ add 14

* Syntactic sugar for currying
fun phis $x y=x+y$
ils
fun plus $x=($ for $y \Rightarrow x+y)$
val plus $=($ fin $x \Rightarrow(\ln y \Rightarrow x+y))$
fun sun $x y z=x+y+z$
sum : int $\rightarrow$ int $\rightarrow$ int $\rightarrow$ int
\# Higher order function (HOF ...?)
Def functions that takes in some function as arg or returns a HOF as output. (* filter: ('a $\rightarrow$ bool) $\rightarrow$ 'a list $\rightarrow$ 'a list

REQ: $P$ is total
ENS: filter $P L \Rightarrow L^{\prime}$ s.t. $L^{\prime} \subseteq L$ and $\forall l \in L, P(l)$, preserve order and multiplicity. *)
fun filter $p[]=[]$
1 filter $p x: x s=$ if $p x$ then ${ }^{c} x:$ filter $p x s$ else fitter $p x s$ end val keepevens $=$ fitter $\left(f_{n} n \Rightarrow n \bmod 2=0\right)$ : int list $\rightarrow$ int list keeperens $[1,2,3,4,5] \hookrightarrow[2,4]$
fitter $\left(f_{n} n \Rightarrow n \bmod 2=0\right)[1,2,3,4,5] \hookrightarrow[2,4]$

* Composing function

$\operatorname{fun}(f \circ g)(x)=f(g(x))$

$$
o:\left({ }^{\prime} b \rightarrow{ }^{\prime} c\right) *\left(\prime a \rightarrow{ }^{\prime} b\right) \rightarrow '^{\prime} a \rightarrow{ }^{\prime} c
$$

$\begin{array}{ll}\text { val increment } & =f n x=x+1 \\ \text { val double } & =\text { fun } x=2 * x\end{array}$
increment o double : int $\rightarrow$ int $\cong$ fun $x \Rightarrow 2 * x+1$
double o increment: int $\rightarrow$ int $\cong f_{n} x \Rightarrow 2 * x+2$
\# The most fanwons HOF -"map"
(* map : ('a 'b) $\rightarrow$ ' $a$ list $\rightarrow$ ' $b$ hist
REQ true
ENS map $f\left[x_{1}, \ldots, x_{n}\right] \cong\left[f x_{1}, \ldots, f x_{n}\right]$
fin map $f[]=[]$
1 map $f x: x s=(f x)::\left(\operatorname{map} f x_{s}\right)$
map double $[1,2,3] \rightarrow[2,4,6]$
val doubler $=$ map double: int list $\rightarrow$ int list
doubler $[1,2,3] \rightarrow[2,4,6]$
\# Fold : accumulate result over whole list
foll, folds: $\left({ }^{\prime} a * ' b \rightarrow \prime b\right) \rightarrow ' b \rightarrow{ }^{\prime} a$ list $\rightarrow{ }^{\prime} b$
Def: folder $f \geq\left[x_{1}, \ldots, x_{n}\right]=f\left(x_{1}, \ldots f\left(x_{n-1}, f\left(x_{n}, z\right)\right) \ldots\right)$
fold $f \geq\left[x_{1}, \ldots, x_{n}\right]=f\left(x_{n}, \ldots f\left(x_{2}, f\left(x_{1}, z\right)\right) \ldots\right)$
fool (op +) $O[1,2,3,4] \rightarrow 10$
folder (op +) $O[1,2,3,4] \rightarrow 10$
fold (op -) $0[1,2,3,4] \cong 4-(3-(2-(1-0))) \rightarrow 2$
fold (op-) $0[1,2,3,4] \cong 1-(2-(3-(4-0))) \hookrightarrow-2$
fin fold $f z[]=[] \quad \subset$ updated accumulation 1 fold $f z x: x s=$ fold $f(f(x, z))$ xs
fun fold $f z[]=[]$
1 folder $f z x: x s=f(x$, fold $f z x s)$
uh oh not tail recursive
folds (op ::) []$\cong$ id
fold (op::) [] $\cong$ rev
folder (op::) YX气 X®Y
fold (op::) acc $L \cong \operatorname{rev} L$ e acc

Aside
fold is
"catamorphism" for list.
see cat theory (?)
rather typical in data strucs

