
Today: most important concept in CS - Abstraction!

stony, everythingon Excel , modular, but fully.
depend on everything. so

you'll be working with idiots)

connected. Hard to abstract.
protection from other programmers

#Enforcing abstraction in MI
MLConcept

interface
incementation

signaturestructure / module

Int. compare
§ expression

signiture
INTEGER

signahire

Signature QUEUE =
Sig type 'a 9

val empty: 'a aval end: ag*'a = 'ag
val will: 'ag as bool

val deg: 'a g as 'an'a g
exception Empty

= abstract! Client don't know what it equals to

Lec 16

little

Int:

module

end

Structure with list as quere
1. Abstraction function

The list contains all cument etems of queue in arriwal onder
2. Reprecentation invariantNone in this case
3. Code

Structure list Quene: > QUEUE =
Struct
type 'a g = a list a alstract type

opaque ascription, but com make transparent
by replace".' with ":

should only use four debugging

fun
funmill Is = toke

1 null = false-

exception Emptyfun deg [7

need
match signahme

raise Empty
ded xig = (X, 9) a can write things other

than those in signature

Structure Q= List Queue

val 92 =Q.englQ.eng (Q.empty, 12,2)
92: intO.9 sclient not allowed to treat it as it list

a SMINI prints this

* ML by default doesn't print what
you're supposed to see

val là, b) = A. dea
= - : int Q.q

('a, -) = Q. deg
id, -) = Q. deg

end

Client

val
val

92
92b

Improving queue with dowble
1. Abstraction

(front,

3. Code

- front drew back contains elems of
queue in arrival onder

Structure
Struct

type

Two List Queue :> QUEUE =

'a g = 'a list a 'a list
val empty = (CJ,CI)fun eng (of. b), x) = (t, xib)fan mill CCI.CT) = trice

will = false
exception Empty
fun dea (IJ. [JI) = raise Emptydea (CI, b) deg (rev' b, [J)• deg (xif, b) = (x •(e,b))

« Better amortised OCt)

Structure O = TwoList Queue

Dictionary

Signature DICT =

Sig type key : string a concrete type'a entry = Key t'a
= abstract

empty: 'a dict
lookup: 'a dict = key - 'a option

: a diet - 'a eatry-s 'a dict

stack

back)

« OCI)

end

type

end

Bad impl

Better imp - tree

list as diet

1. Abstraction function I refers to mapping bown abstract reps and theoretical date
(key, value) pains in tree comespondto entries in dict

2. Repr invor
thee is sorted

Structure
Struct

BST :> DICT =

typekey = string
type 'a entry
datotype a treedict
val empty

de Legmpig " Nose of a tree it a entry a ia tree
New field not in signature.
But if transparent,

I broken as invisible fields in sigcan get printed

= la tree
= Empty

could define fun insert (Empty, e) = Node (Empty, e, Empty)
as dotatype I insert (Node (h, e' as (k', -). R), e as (K, -)) =

(case string.compare (K, k', ofEQUAL Node (L, e, R)
LESS Node (insert (L, e), e', R$
GREATER » Node (L, e', insert (R, e))

end
I Don't pattern match structure

Lomit I

3. Ind

it becomes

m struct

)
:

