
Lec 18

#Siguature design

Signature DICT =

Red-Black Trees

type
typetype
val
valval

key - string key tia
224: a to day thini: 'a dict * a entry =

* Red-Black tree (RBT) - a self-balancing tree
* Rep invar

- temporarily broken a dustily place of intalauce a reestablisch balance
datatype a dict

AVL - bruteforce
RBT - slicker, less strict,

still works good

* RBT mars

I 'a dict to 'a entry so a dict
consider this black

1. Tree is ordered
2. No red node has

3. Every node hasviz.same mum of black

red child viz.
well- defued black heightto leaves in

no two red in now

path downward

extry'a dict

'a dict
end

oBlack
Red

Empty

Insertion

Why good invar?

If no red node then perfectly balanced.
• At most half red in path, at least zero red

= longest path & 2x shortest path
depth 2 log; (I nodes | +1)

good enough

Insert red ensure black height

Breaks red invar

Ex.
22

21 26

7 21

20
26

25

6
§ 8

6

3

22

26 7
72.

20 26

20 25 2 al 25

19

5

#Rotection in general

+ -*

restore Right
restore Right +-20-4-+ -

#One more problem

6 -
more violation.
Need to rotate
again

root colorbreak invar but
we com make itblack

I insert the fewer men of
red maybe the less
rebalance to do

coses

4
restorel eft

restorel eft X
3

z

2
2 3 4

2

2 3

zz
4

/ 3 4
2 3

8 8

doesn't

29 6 - 29 8 - 20 2S
21 29 2 20 29 /

' 8.
/

19 21 -g 19
/

21 29

19 2

#ARBT - Almest Red-Black Tree

What do we know in case of red-red violation
1. As before2: As (2) but a
3. As before

red root can have one child

Code
(* restoreLeft:

Dis
restoreleft D

(D's rect
is RBT with same elems

'a dict
is black and laf child is ARBT and right is RIBT)

fun restorcheft (Black (Red (Red (di, x, da), y, ds), Z, d4)= Red (Black (dI, X,
restoneleft (Black (Red (dI

Red (Black (al, X,=
restoreLeft

= D

,d2), y, Black (dá, 2, da))'33, d4))X, Red (d2, Y, d3), z,
, d2), Y, Black (d3, Z, d4))

I restore Right
(* is :

just murrer I
= 'a dict'a dict

Dis ABT
ins D
ins Dis:

have some
RBT
ARBT

has right

height as D

REO
ENS

a
RBT

dict
of

D

des d4)

REQ
ENS

iP

ins D

black
D#D

elews

back
red

(n insert:
D

dict I 'a eatry = 'a dict

fun insert (D, e as
let fun

insert (D,e) is RBT with right elems
(k,-))=

Red (Empty, is, Empty)(L, e' as (k'. R)
Black (L,e, R) I3. compare (k, k) of
restere Left (Black (ins L, e', R))

GREATER » restore Right (Black (L, e', ins R)))
ins (Red (L, e' as Ck', _) , R)) =
case String compare (k, k') ofEQUAL Red (h, e. R) I

LESS »Red (ins 15 e' R)
GREATER » Red (L, e', ins R

L must be Black,
so ins I must be RBT

end

I lookup omitted]

REQ
ENS

a
IS RBT

ins
ins
(case

Empty
(Black

=
=

Strin

EQUAL
LESS

) simili
m

(case
RedD'

ins
t

D
" ofBlack t1

a D
)

