Lee 19
\# Different parallelism

* Deterministic parallelism - well-defined.deterministic answer, wont functional programing
* Non-dderminustic parallelism - answer may vary as threads interfere, time happen affect things \checkmark usually called concurrency
* Cost graphs

Helps understand work Ispan of parallel programmes.
It's a directed acyclic graph (DAG)!

- Source node: no edge goes in
- Sink nook : no edge goes out
- Edges : dependencies

Base Case: \quad sink $=$ node

Sequential composition: do one graph then next graph viz. series

Parallel Composition viz. fork-join viz. parallel

Analysing such graph:

- Work: $\}$ - mum of nodes in $\left\{\begin{array}{l}\text { graph } \\ \text { longest path }\end{array}\right.$
work: 7
span: 5

Note this wort be same number as old approach. But axymotoptically some

Brent's Theorem: an expression with work W and S can be evaded on P processors in time

$$
\Omega\left(\max \left(\frac{W}{P}, s\right)\right)
$$

Just an estimate. Hard to do that well, assumes full utilisation all the time
\# Scheduling - pebbling

Consider:

Brent's theorem: $w=10, S=5, p=5$
\Rightarrow predicts 5
Actual : 6
\# Sequences
Abstract datastruct to do parallelism
Notation: $\left\langle x_{0}, \ldots, x_{n-1}\right\rangle \leftarrow$ list is sequential, but seq gives parallel access
Seq $\left\langle X_{0}, \ldots, X_{n-1}\right\rangle \cong\left\langle Y_{0}, \ldots, Y_{m-1}\right\rangle$ if $m=n$ and $X_{i} \cong Y_{i} \forall i \in{ }_{i} \ldots n-1$

Signature SEQUENCE
sig
type 'a seq
exception Range of string
val empty: unit \rightarrow 'a seq
val tabulate : (int \rightarrow ' a) \rightarrow int \rightarrow ' a seq
val length : 'a seq \rightarrow int
val nth: 'a seq \rightarrow int \rightarrow 'a
val map: (' $a \rightarrow \prime$ ' $b) \rightarrow$ ' a seq \rightarrow 'b seq
val reduce: (' $a *$ ' $a \rightarrow \prime a) \rightarrow{ }^{\prime} a \rightarrow{ }^{\prime} a \operatorname{seg} \rightarrow{ }^{\prime} a<$ like fold
val mapreduce : $(\prime a \rightarrow \prime b) \rightarrow \prime^{\prime} b \rightarrow\left(\prime^{\prime} b *{ }^{\prime} b \rightarrow{ }^{\prime} b\right) \rightarrow{ }^{\prime} a$ seq \rightarrow ' b
val filter: (' $a \rightarrow$ bod) \rightarrow ' a seq \rightarrow 'a seq
:
end
Coot Graphs (assumes pure functional)
empty ()$\cong\left\rangle \quad\right.$ tabulate $f_{n} \cong\langle f(0), \ldots, f(n-1)\rangle$
O(1) work \& span

Work: if all the G constant time then $O(n)$
Span: if
length $\left\langle x_{0}, \ldots, X_{n-1}\right\rangle \cong n$th $\left\langle x_{0}, \ldots, x_{n-1}\right\rangle_{i} \cong X_{i}$ if i in range else exception

$$
I \leqslant \text { promise odis }
$$

$\operatorname{map} f\left\langle x_{0}, \ldots, x_{n-1}\right\rangle \cong\left\langle f\left(x_{0}\right), \ldots, f\left(x_{n-1}\right)\right.$

W/S same as tabulate
requires 9 associative in order to
reduce $g z\left\langle x_{0}, \ldots, x_{n-1}\right\rangle \cong x_{0} \odot \cdots \odot x_{n-1} \odot z$

Aside: in 210 we require z to be identity for 9 .
viz. $g(x, z)=x$.

If 9 constant, work $O(n)$ span $O(\log n)$
$\sigma^{\text {(sloppy notation) }}$
filter $p s \cong\langle X \in S \mid p s\rangle$ in same order If $p \in O(n)$, work $O(n)$
span $O(\log n)$
why? maybe look at some logn sperm iupl
fun filter $p c=$
let
val nothing $=$ empty ()
fin keep $X=$ if $p X$ then singleton X else nothing mapreduce keep nothing append s end

Ex: count um of students in room
fun sum (s :int seq.seq) : int $=$ seq. reduce $(o p+) 0$ s
type row $=$ int seq.seq
type room = row seq. seq
fun count (class : room): int = sum (Seq .map sum class)

$$
\begin{aligned}
& \text { work } O(\operatorname{mn} n) \\
& \text { span } O(\log m+\log n)
\end{aligned}
$$

