
Lec 19

Different parallelious

* Deterministic parallelism

parallelism
I usually called concumency

well-defued. determiristic anewer, want functional programming
anower may vary as throads interfare, time happen afect things

+ Cost graphs

Helps understand work Ispan of parallel programmes

It's a directed acyclic graph (DAG)!

no edge goes in
no edge goes out

Base Case:
dependencies
sink = node

Sequential composition:
viz. series G.

do one graph then rest graph

* Non-ddermiustic

- Source- Sink
" Eages

node:
node
:

Ga

Parader Copposition via fork join

Analyzing such graph.

- Work: I mun of modes in (ingeter
Note this won't be
same mumber as old
approach. But asynatopticallysonne

Brent's Theorem:

#Scheduking
Consider

an expression with work Wands can be evaled on
p processors in time

Inst an estimate

- pebbling

12 (max (W, 5))
. Hard to do that well, assumes full utilisation all the time

Brent's theorem: W=lo. s:5, p=5
predicts 5

Actual: 6

05008
Al... al.

(1+2) ×3

G
Source

3

Kirk

path

work: 7
spam: 5

tire
processors
Pl

b

с

2
3

e

f

S
6

#Sequences
Abstract datastruct to do parallelism

Notation: (Xo,...,. Xn-r> « list is sequenctial, but seg gies paralled access
Eeg (Xo, Xu-r> = (Yo, Im-r> if man and

Signature SEQUENCE
sigtype:la sea

empty () gwes value restriction.
value and ML doesn't allow poly exp

exception Range of stringempty: wit» seg
val tabulate: (int »'a) = int »'a seg

length: 'a seg a intuth: 'a sed - int= a
map: ('a = "b) = a seg "b segreduce: ('a*'a sla) »'a

val mapreduce: ('a »'b)
» 'a seg=

filter: ('a bod) ='a seg = 'a seg
- like fold
'a seg = 'b

Cest Graphs (assumes pure finetional)
empty ()E 18 tabulate In = (flos,

Old work t spon

Work; if all the constant time then On)Span: t O(1)

Note
it's not

val
val 'a

'bal'b*'b-a'b)s

end

fun-ry)

Gfeas Gfen-ra

(Xo. ..., Xual an uth (Xo, ..., Xu-r> i = Xi if i in range eke exception
a promise Olls

map f sXo, ..., Xn-1> = (f(X) ,..., f(Xn-s)
WIs same as tabulate

requenes a associative in order to
group things. Let x0y = g (x,y)
(Xo,, Xn-1) = X. G ... oXn-, ° 7

Aside: in 210 we require a to be
identity for g.
viz. g (7, 7) = * .

If a constant, worksan

(sloppy rotation)

OCh)
OClog n)

flter ps a (Xes I ps" in same order
If peoch), work OCh)

spew. O(log n)
why? maybe lock at some lign spawn inopl

(note not OCk) work)fun filter pa=
let vou
infun Keep

mapreduce
кавріку . # р 44.empty.

' IF p * then singleton X ere nothing
keep nothing append s

length

G

reduce g z

Z

end

Ex: count mum of students intude
hum sum Is: intseg. reduce cops seg. seg) , int =

sea.ceg
row seg.seg(class: room): int

sUm (seg.map sum class

type now = int

O Clogm + log n)

room

typefun room:
count

O cmn)

