
The 21
1122 is crap
#Reference type!

Imperative Programming

sadly I's sometimes useful

type: t rep for amy type t
value: a memory cell lift thing in box

Rule on ref e
l. evanate e

2. if e us v

I allocate some cell and put t'in there
but thing in box remaurs changable

Rule on le
1. evaluate er. i .

refe: t ref if eit

e,:= Cr
1. eval e,
2. eval ez

the !e
le:t if eit ref

3. If e, wal, easy u', then overwrite content of cell with vi
f en: t net, e2 it

4. return ()
e,: = ez: unit

then

side effect
« "mutation"

c = rel 12
() = c:= 4

x = !c * No longer fictional programming

Note these are not same:

val r = nef! I net to different boxes

Multiple wars can bind to some cell
val c = ref 10
va

The operations
ref: 'a
! :a ref

Tole de JaliasingC id

la ref it'a unit
-> almost constructor

- pattern matching allowed- but application to value isn't value

fun containszero cref o)

Value restriction: Only value can be pelymorphie. Now value must have type.

val *= ref vil not value,
val X: int list nef = nef nil

so doesn't work

annotating type will work

val
val

va

2/ C

4 / 8

'a ref
'a

:=

=
true
false

Sequential expressions

(en; ex;
r Keep result here... ;, en) la Un i livov:

Inst care about value. only forler; ez;...; en): tu if ei: ti Evaluated left to right

let val c= reflo
i (c: = 11: !c)
end

#Geting rid of allocated memory

- Garbage collector

Extensional Equivdence

* Sill under research! Gets complicated

" we say ese' ifil e, e': t
(e, s) (v, s') and

(v', s') and
These are
too strong.more

sullient, but
Take 312 for

for every store vir. memory s.
Race condition - Bank

fu deposit a n = a:= la +n
an = a:sa-nfim withdrew

side effect.

Ex.

(e',s)

ace = ref 100

=! acc4go
(deposit ace so: withrow acc 70)

Nothing specias.

L
* Persistent: no mutation
* Ephemeral may have mutation

Persistent Ephemenal

= I deposit acc so, withdrow ace 70) & in parallel=! acc
non-determistic! Could be 150, 30, 80, ... or junk

sequential Functional
Programming

Hardes but
possible

Concurrency

Benign uses of imperative featare: imperative feature for abstraction
type graph = int » int list

(= C1,21
9 2 = [1, 3]
g 3 = [4]g 4 = [J

(* DFS 4) «Doesn't work... cycles
fun reach g (x.y) =
let fun dis no = n =y

List, exists ifs (g n)

val
val
val

.

val
val
val

acc = rel 100

Parallel

3 4 fun
onelse

in dis x
end

Solutions:
Keep track of visited places as list

Use references
complicated

fu reach of lx, y) = = benign: whœever using can't tell it uses references
= refval vistted

fun oksn = nay(member
Wat as member ad !! witted isnilvisited; list. exists of's (g n)))

#Lazy references?
Issue: stream access not cached
Sol: memoisation

fum delay d=
val answer = ref NoNEfun f () =

(case! answer of

let val i=dI) in
(answer: = SOME x ; x)

in stream f

I)
orelse

in
end

let

SOME X
NONE (

) end)

end

