Lee 22 Context Free Grammar

Io (Human
vexing list of char
lexing list of tokens parsing G expression
fact (3)
(ID"fact") :: LPAREN :: INT 3 :: RPAREN
App (Var "fact", Num 3) \leftarrow abstract syntax tree
\# Chomsky hierarchy
level
General grammar
Context-sencitive grammar
Context-free grammar
Regular grammar
representation

- turing machine
- whatever
- pushdown automate
- file automats
application
computing
whatever
- parsing
- plexing/search
* Context free grammar
$P \rightarrow \varepsilon \mid E ; P$
A empty
$E \rightarrow E+E|E * E| E$ andalso $E \mid$ case E of $M \mid \ldots$
$M \rightarrow Q \Rightarrow E \mid Q \Rightarrow E \| M$
$Q \rightarrow() \mid \cdots$
Def A context free grammar $(C F G)$ is a tuple (Σ, V, S, R) s.t.
- Σ is set of terminals viz. chars we see in program,
- V is set of non-terminals ($\Sigma \cap V=\varnothing$)
- $S \in V$ is the start symbol
$-R$ is set of rules of form $N \rightarrow \omega$ where $N \in V, \omega \in(\Sigma \cup V)^{*-}$ star from regex

Suppose $\alpha, \beta \in(\Sigma \cup V)^{*}$

- β is derivable from α in one step $(\alpha \stackrel{\prime}{\Rightarrow} \beta)$ if: $\exists \partial, \delta$ s.t. $\alpha=\partial N \delta$ and $\beta=\partial \omega \delta$ where $N \rightarrow \omega \in R$
- β is derivable from α if $\alpha=\beta$ or $\alpha \Rightarrow \sigma_{1}^{\prime} \Rightarrow \sigma_{2} \Rightarrow \cdots \Rightarrow \beta$
- $L(G)=\left\{\omega \in \Sigma^{*} \mid S \Rightarrow \omega\right\}$
$E \times$. Let $G=(\Sigma, V, S, R)$

$$
\begin{aligned}
& \Sigma=\{a, b\} \\
& S=\{S, A\} \\
& R=\left\{\begin{array}{l}
S \rightarrow A b A \\
A \rightarrow \varepsilon \\
A \rightarrow a \\
A \rightarrow a A
\end{array}\right\} \quad \text { actually redundant }
\end{aligned}
$$

Derive
$S \stackrel{\prime}{\Rightarrow} A b A \stackrel{\prime}{\Rightarrow} a b A \stackrel{\prime}{\Rightarrow} a b a A \stackrel{\prime}{\Rightarrow} a b a \leftarrow$ Left most derivation: always expand left most

$$
S \Rightarrow A b A \stackrel{\Rightarrow}{\Rightarrow} A b a A \Rightarrow A b a \Rightarrow a b a
$$

using mule 3. Multiple ways. Then we get multiple parse trees : C may cause inconsistency \leftarrow Ambiguous
Def A grammar is ambiguous if it has multiple left-most derivation
\rightarrow Figuring out if a CFG is ambiguous is undecidable
\rightarrow There are languages sit. all $C F G$ to describe it is ambiguous
The All regex can be expressed as CFG

$$
\begin{aligned}
& 0-(\Sigma,\{S\}, S, \phi) \\
& 1-(\Sigma,\{S\}, S,\{S \rightarrow \varepsilon\})
\end{aligned}
$$

$$
a-(\Sigma,\{s\}, S,\{s \rightarrow a \xi)
$$

Ex. $\quad\left\{a^{n} \mid n \equiv 0(\bmod 3), n \geqslant 0\right\} \leftarrow$ regular. finite storage to accept. $\left\{a^{n} b^{n} \mid n \geqslant 0\right\} \leftarrow$ not regular, but context free. finite storage + stade to accept $\left\{a^{n} b^{n} c^{n} \mid n \geqslant 0\right\} \leftarrow$ not context free. Need finite storage + at least two stacks $\left\{a^{n} b^{m} c^{m} d^{n} \mid m, n \geqslant 0\right\} \cup\left\{a^{n} b^{n} c^{m} d^{m} \mid m, n \geqslant 0\right\} \leftarrow$ context free, but always ambiguous

Pumping Lemma - for proving some lang is not in a Chorncky class
If L is infinite regular regular language, $\exists \alpha, \omega, \beta$ sit.
$\omega \neq \varepsilon$ and $a \omega^{k} \beta \in L$ for every k viz. there's some loop
Consider $\left\{a^{n} b^{n} \mid n \geqslant 0\right\}$. Suppose ct's regular.
Then $\exists \omega \in \varepsilon, \alpha \omega^{k} \beta \in L$ for all k. idea is that we conns repeat any $a b, a b b, .$.
Consider $\quad s \rightarrow \varepsilon|a s a| b s b|a| b$
\# Simple Parsor \leqslant (usually we can use parser generator these days)
\rightarrow Bottom up: troll rebuild to S from string
\rightarrow Top down: start from S and try make target string

$$
G=\{s \rightarrow x|\lambda x \cdot s|(s s)\}
$$

datatype token $=$ LAMBDA I LPAREN I RPAREN I ID of string 1 DOT
datatype exp $=1$ Var of string
1 Lam of string $* \exp$
1 App of exp* exp
(* parse Exp : token list \rightarrow (exp * token list \rightarrow ' a) \rightarrow ' a fin parse Exp (ID $x:: t s$) $k=\operatorname{Var}(x,+s)$

1 parse Exp (LPAREN ::ts) $k=$
parse Exp ts $\left(f_{n}\left(e l, t s^{\prime}\right) \Rightarrow\right.$ parse Exp +s' (fun (e^{2}, RPAREN::ts") \Rightarrow $k\left(A_{p p}\left(e 1, e^{2}\right),+s^{\prime \prime}\right)$
)
1 parse Exp (LAMBDA::ID $x:$ DOT ::ts) $k=$
parse Exp is (fun $\left.\left(e,+s^{\prime}\right) \Rightarrow k\left(\operatorname{Lam}(x, e), t s^{\prime}\right)\right)$
1

Expect

