
Lec 23 Computability

# Decision probem - yes / no jien impet
Elements

,- Property

Instance
some chess beard

a graph
Property

does white have regueranteed win
cade?

I is e well-typed
does e reduce to value

proferty P on type D, a decision procedure for P is a function
f: Da bad sit.

1. fIx)e true if Pholds for o
2. f(x) as false if p doesn't hold for it

Def If a decision procedure exists for P,

# The halting problem .

Equivalently:
%. Its total

4 Pholds for y

then P is decidable
else P undecidable

Domain:
Instance
Property:

whether a programme halts

Cent o int) tint for now I eat it HAlT

Domain
Instance

Domain
chess
graphs

SIL

Def Given

e

true

(f.×)f value u



The HAlT is undecidable

Proof a proof by diagonalisation
Suppose H: lint mint) bod is a decision procedure for HalT.

"Hig, x) la true g(a) valuable
•H is total

Then let
fun heap1) = loop()

(x: int): int =
: unit a a

diag, ding, ») then
Consider

Suppose
H( diag, o)

diag co) =
So a

if H (ding, x) then hoop i) else o
hoop ()
false because ding o not valuable

Suppose ques false
diag co) = if He (ding, X) then loop I) else o

So a a true because ding o a o

# Proof by diagonalisation
Recall: Cantor: all ways to list mums in IN not countable

If
else

if H
else o hoop ()

true



# Reduction argument

Suppose Pand O are properties
Def If P reduceable to Q

decision procedure fp for P
if we have a decision for a, fo, we can implement

Consider:
HALTO - for some fure f: lints int), fo is valuable

Idea: HALT can reduce to HALTO

The HaLTO is undecidable
Write HALT SHALTO

at least as hard as HALT

Proof

Suppose 3 is a decision procedure for HALTOwe have
Implement a procedure for HalT:a: int a int

.... then we
So a cant havejust implemented a deeision procedure for HalT.

Turns out we can have problems that are more impossible than others.

a

existed



#Semi-decision procedure
Def A semi-decision

f: D-> bod st.procedure for I is a function

Def P is
semi-decision procedure

Thr HALT is semi-decidable
Prost

1. f(x) u trie a Pholds for r
(so if answer is no fam loop, but if yes of must return true)

recursively enumerable (r.e.) aka semi-decidable if P has a

fun H'(g: into nt, Xint): bool = (g7; tree)
So HALT is re.

P is co-recursively enumerable (co-re.) if TP is r.e.

fag func equivalence

If P decidable, +P is decidable

We can just take negation after deciding P

Def
Then... r.e. decidable co•re.

The

HALT
HALTO

SHALT
SHALTO



If P is re, and co-re., then P is decidable
Run decision for P and up simultaneoushy, then we know once one ofthem finishes.

I Insanely: Pa's
Domain:

Instance:
(int »int) # (int » int)
(fig)

EQUIV is not re, and not co-re.

Suppose Eg is semi-decision procedure for EQUIV

WTW a semi-decision procedure for -HALTO
fun SCh: int a int): bool =

Eg (lfn y »Choiy), If y = loop ()ll
(nat care) Suppose notEg is semi-decision procedure for "EQUIV

WTWa semi-decision procedure for -HALTO
fu s'Ch: int sint, X: int): bool =

not EglifnyaCho;y), If y o y ))

Then

#Neither re. nor co-r.e.

Consider

EQUIV

Than

Preset

Cnotre)



#Bonus: Rice's Theorem?

Domain:
Instance:
Property:
Domain:
Instance:
Property:

(int -> int)
trivil. Just return the

(int » in)
trivil. Just return false

these two decidable.Outs fumes no decades or angelingint - in then p undecidablein let ant? underdale
Proce

Let yin st.
fur l (aint) : int = hop ()
Suppose PIl)

Ply, -PIn). Suppose D is decision procedure for P

fun H(I: int = int): bool =
not (DIC fn a= (ft; n x))))

if flos halts Hef) = not (DCh))

Suppose pll)
fun H (7: int -> int): bool =

DIC fn * = (f*; y X1))

f
true

f
false

Ihr
ate

§ true


