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Instrustors. Guy Blelloch + Charlie Garred
Pody. Movietron for course content
Lab credit caps at3 exams

#Deconstructing course title
Parallel

• Sequential — special case of porallel by having ne al

Not using multiple cores >wasting your rume
Many algorthous inherently porael ще more cores

Dependency graph

+ Recall work and span
total computation longest path

Data structure & Algoistha

- Mentation Again retres ali, liege anais o
Petitem dung" Toolbox + connactions « problem, search for solution

# Example problem solving

Problem: human genome coquencing (2001,
String of {A. C. G. T3. 3.1 billion in leugth
Constrainb
- Can't read more than 2000 bose pairs
- Sequential read takes loos of years

3.1 billions of nuclestide)

Lec l

80%

• Parallel

trial and
error wahitution



→ Technique - Shotgun Methad

make muttiple copies
shatter into fragments
read each fragment

¿ Done in lab~100 long
reconstruct whole sequence 3 done in computer

I try find overlaps and combine

The algorithm

Get set of all sequences read
Get rid of cequences that are subret of amotherFind best reconstruction

I Heuristic: fund

reduced goodle he tartant tring Palam

Froblem solving

INP hard!
given set id strings, fund shortest supastring

→ First try brute force solution, as long as correct
try all permutations, merge overlaps, pukeshortent Uln!)

*S Nt hard but hat polyn an a time pep mination ane hand
Connection. Traveiling Salesmanslams, stan one graph aust
Reduction. → vestex

- overlap (S., S2)
spiral vertex 1, make w(s., 1) =w(1, 5.)=0

to fix cycles

shortest superstring

Informally

distances
distance)

add
for all si,



Asymptotic Analysis, Recurrances

#Asymptotic Analysis
- useful abstraction

- smittes expression
-avord machine detail! programmng long
= foeus on details of algorithin

Def fins asymptotically dommates gon) if Ic, no sit.
5 c.fen) ¥ n> no

Notation - la means log.
- Olfens) = ≤9! f asynoptotically dominates 9?
- I (fen)) = £g| 9 asymptotically dominates f 3• Olfens) = Olfen)) n(fen))
- Notation abuses... Really means...

* n= OCu?)
= fon) = g(n) + O(n=)
* OCh) = OCh)

- o(fens) = OCfen)) \ @(f(n))
= c(fin) = 52(f(n)) \O(fCh))

fon) € Egon) + hen) | hch) € OCh) 3
O(h) sOCh?)

# Recurences

- Made as re rent to crions
- Harder to fund closed form solution
msort (A) = If lAl &I then A else

Let (L, R) = msort (ATo... AI),IAI])
in merge

Wusort (n) = {C.. if nst

msort (AIA...(L,R) end

2W(3) + Wen) teaconvention a drop thisif nol EO(nign)

Lec 2

Ex f(n)
2n

g(n)
g (n)

ngn2"

2n

2'''

Yes
Yes
Yes
No



More abused notation: W(n) = 2W(5) + OCh)

Tree Method
msort

- Unfold level by level and sum themI local costs

20(3) = 0(1)
gn levels

W(n) = 2 (cn+2'cs) - EOCulgn)

Consider WCh) = 2w(3) + n

lost (LI) = nt

cost (La) = 2(2)

cost (Ls) = 464)°

I Root dominated recurrances
WCh) =n+ n'- + "

€ O(n')
geometric decay

cost (Li) = 2(5) = 15

lotter passinated

Brick Method
5 All children

Case 1: cost (chidren (v)) Ex cost (v) Unode 1 and Y 0<0<1
then overal cost e O (cost croot))
Prof: Lost (Lo) + + cost (Ld)= cost (Lu) + xcost(Lot X'cost (L) + xt

iost (ho)
Tx ost (Le)

/
7 * Oen)

1111 OCh)

191-1

Lo

:
Li

-+...

- balanced
Aside:

=1- adri for a #1
1-X

post (ku)



case 2: impud is a cost childrencus for all nodas o withthen overall cost is Ol cost (base

base of tree

Suppose some imput size for each level, then overall cost
= cost (Lo) + ... + cost (Ld-1) + cost (Ld) + cost (base of )
§a cost Chat...t a cost (La) + cost (Ld) + cost (leet)

impert no



Brick method balanced case & substitation method

#Brick method - more on leat dominased case

Suppose cost (v) so cost (children (u))
I Sum of all children

for all nodes u
impute zine greater than

Ex. W(n) = 3W(3) +n

cost is O (cost (bareet))se

111 /11
abbabe coo

Computing

Usually."

cost of base

if leavescost (base
has DCI) and root is leaves,
e) = O(# leaves)

Wen) = a W(b)*...

Niayars = log.n 1. A

Neaves = alogan
=n log, a
€OCh*)

I by ages = clogsa

But some cases are different...
Ex. WCh) = W(3) + WCs) +5 ...

Lec 3

with hase dal.

WCh) = 2w (n-1) +1
n >42
Ien $42

Я

60] Base во 68 ...
Base

Ex.

•. -



→and leaves scattered

I But more things here

cost (Un) =In
cost (chadren (vn)) = +E = 5 (JI +$)

sometimese
So increasing
Leave dominated.

#leaves L(n) = (108+108
# Substitution Method

— aka guess and check
come up with some function

_by induction

Ex. (ront) guess: Lin) =nt for some constant b
L(n) =nd = 15=1 for all b.
Assume for oskan, LCk) = kb.
LCh) = L(3) + L(7)

=(5+68) by It
= nb. (I +#)

But if we want no. (ir +$) =n, we need:

bz
» L(n)

WCh)
I if... say

& Wolfrom alpha
0.788...

= n°.788...
E OC no.188..., 2 since leaves dominated
base case costs O(m),

W(n, m) € O(mu°788...)

local cost:

not the

=1.284 5n

else

(BC)(IH)
(IS)



# Brick method - balanced tree
work balanced,

overall cost s
across levels:

I asymptotall the come as inprecise defunction
- highest cast level

Ex. Merge sortW(n) = 2W(=) + O(n)
# level € O(logn)
overall € 0 (nlogn)

Note: not all recurrences fall in one of brick cases
#Cost models

time?
operations?cost moder assymptotic

more
over work span model

more

Some types of models...

Processor P

Reg sire

another layer of abstraction,
the quastion of "asymptotic what?

- Random access machine (RAM) model = Gard enong for writing
OCI) instructions, read, wrote, add, mustiply.jumps, conditionals...

sequential complexity in 122: #instructionson RAM model
inporfection: read write

- IO model: non-constant read write cost
may not be OCI)... (thick cache)

If

Oln)
O(h)

O (n)
:

cost model t

cost model
processe



- RAM model but multiple processors

size

k processors

- P-RAM mode:
P-P-M model thrit but all process a such enorely
- P-RAM (exclusine W). = disalow =-
Problems, how do we model and partition?

maybe possible, but messy to work with
also synchronisation is costly to implement
Is but asynchronous makes it even harder to program

- On top of async PRAM - Nested Parallel Work-Span Model
More like a language cost model than machine model

expressionse::= x1c
WCe,) + WLes) + 1
WCe,) + Wler) + 1
WCe) + Wles) +1|

sce,) + SCer) +|
max (SCe.), s(ex)) +1
SCe,) + SCe2) +1

Mem

(var)
(constant)

Work Span
e. + er
e, ll ez

1e,, ea (parallel)
(sequential)



Lec 4 More cost model & Array Sequence

#Nested parale model = recrimely definepions break the model

1+ WCe.) + WCe.)
c+ WCe.) + WCe.)

c'+WCe.) + WCer)

1+ S(e.)t SCer)
c+ S(er)+ S(er)

c'+ max (SCe.), S(ez))
if e, then es else es

This models Sync P-RAM pretty well

# Dependence graph representation
I isomorphie to above representation

G(x), GLI) • source = sink

S= longest path

# Mapping nested por model to hardware

pebble game - gwen depence graph G, put up to p pebble on
nodes at each step sit. all presequisites have a pebble, with the
goal of minimising it steps
Greedy strategy - always put down min (r, ps pebbles, where r=
number of ready pebbles

there's aways an optimal ad that's greedy (but greedy not aleays optimals

с

e,ter
e, i ez
eill es

source

de sink

Gle,ies)
Gles)

W=# nodes GLes)

GCe, Il e2)

Gles) GLes)

jou

#processors



# nodes
len of path

requires at least max (I$7, d) steps1. It
2. Finding optimal is NP-hard

Nested model
W, s

PRAM (7= 1 I premors)
max (Es) < TS W+S

We want thisto dominate... this happens if:
p< 3

parallelism =

Proof for greedy scheduling theorem

Def: node is at level t if its longest path to root is l.
Lemma: on every step, either :

AFSOC let hij be longest level that all nodes are coveredat hit all nodes are either
done or ready.

it we put less than p pettels and not finish the
level, we're not greedy

G p= 2 p=3

L$

Let

L3

16

и

Clans

Mapping

Proof
Then
Then



#Amay sequences, bottom up
Data structure: array

Printives for array
(other impl could use list, function, trees,...)

alloc (n)
parallelFor (ptor)

get ith elem
get length
allocate array
i = x to y

of langth n
, evamate eci) in paraller

I Has unavoidable side effect

Race condition: both write or one read one write
I Avoid this

Implementations

map I Alse lAl
pFor i =

RLi] = fACi]

tabulate f n =
R = alloe n
pFor i = O.. (n-1)RLi] = fi

0..(Al -1)

ret R

ret R



Lec 5 Sequences

# Recall dependence graph & pebbel game

Greedy strat take at most i+s
Well then at each step we either: - contribute to is ter- contrebute to

- contribute to both

So we fill it+s by greedy scheduling
# work span trade off
→ Which to optimise?
I+s... usuallyEcogn worle for deter. amally give up no more that

# Array segs

- Primities partin forks as many as it wants
append A B= tab (fn i» if is lAl then Ati]else BE i -IAlI) (IAl + IBI)

subseq tabulate and grab indices?

W= OCIAl + IBI)

Efferent subseq & split mid
type a sed = (a array * start * end)

→ Then openation does index maripulation without necessarily

Nope spec says O(1).
Because values not mutable we

can reference subseq

copying part of the a array.

5=0(1)



# iterate, iterate Prefixes,
iterate : (Bx a > p) → B → a sea → Bint

w= 0(# Ewef(xi, Aci]))
I Prof's new symbol, whoops

B = alloc lAl
for i in 0..(n-1)BLi] =x

x= f (7, ALi])
ret (B, ×)

(Bxx→p) → B → x seq → (Bseq. B)
But if f associative and sinit is left identity of
do things in paralle
→ iterate f I A = reduce fI A

Associative funcs

iteratePrefues:

F, we can

+, *, ^, ...
fC (h., r.), (la,

copy (x.y) = case y 07,

Examples

iterate (merge <) "
reduce (merge <) «

(raals) then
else

• - NONE → x

(le, ri-latre)
(hi-r, + lz, rz)

Wmerge = 0(n) Smerge

<*>:×€A>
<*>:x€A>

= insertion sort

Emerge sort

= O(log n)
W= O(n?)
5= O(nlogn)

w= 0(nlogn)
5=0 (login)

reduce,scan

5= W

Consider :
X=<int >

r=)) = if

→y
Assuming



More on sequences + techniques

W= O (n) S= OClog n)
→ notation <XEA I FCX))

F= map (fn x= 1 if fix) else 0) A(x, 1) = scan opt 0 FR = alloc (1)
pFor i= O.. (n-1) :

if (FLi] = 1) then REXCI] = Ati]

filter fA=
slanett get which index the
F 1011100111

0112344456

flatten A =
L = (Is1 | SEA>
(x, l) = scan opt 0 L
R= alloc l
pFor i = O.. (IAl-1)

pFor j=o. (LEiT -1
REXCi] + 1] = (ACi])Ej]

ret R

«<2,3>, 47,8.17.147
12, 3,
10 2. 5
40, 1, 2,3,4, 5>

# Sequences Abstractions

Defintion

Cost mode
-ALi] work
"append A B

Impl detail
# Math abstraction

OClogn)
OC log (IAl + IBI))

: ath whatever

Problem solving

Lec 6

# Filter

ret R

1=7
R

# Flatten

mop length
scan (opt)
Rinderes

> 6

Array
sequences
Tree^ List

Red Black ALV

O(r)
OCIAl + IBI)

toabox
connections
search



# Alg design techniques
- Reduction
- Brute force
- Divide and conquer- Contraction
- Greedy alg
- Dynamic programming

# Reduction

Prodem A is reducible to problem B if t instauce of A we
- transform the istance to some instance of B- solve it
- transform the solution back to a solation fur A

Find max in input sequence
Bad reduction: sort it, grab last eem

" sort convert
Oli) OCI)

# Brute-force - mone conflent, god paraleration, use as bashine
and check all possible solu

tions"- "Consider
Ex. MCSS

→ Che are it tet suming identity
I then check redundert workOlnty work

Reduction: MCSS with start position i problem

scan then reduce - O(n) work
OCIgn) span

some MCSSwSP for all i, then reduce.

O to end some wasted work acres different sant portions

can :

Ex.

convert

0()

(MCSSWSP)

Then
Max



Further reduction: MCSS with end position i prodem

" = suppose max

Claim: this is min

MOSSWED A i = let
(b,v) = scan op+ Aco. i]
preficsun = append b sus
minProfix = reduce min as prefixsum
V - minPrefix

Now redimount cork have overlapping scans.

It wasted

Ollogu) span

MCSS A = let
(b, v) = scam

(prefixsans [i] - minPrefix Li] losi<IAl >

reduce max -as max For Ends

Oln) work OClogn) span

This sol took 9 years to find

(MCSSWEP)

end

O(n) work

New alg
opt 0 A

in
end

Yay



Lec T Alg design techniques continued

# More divide and conquer
Generally...• Base case ...
- Inductive case

1. Divide into fens parts of gin) size
2. Recurse
3. Combine results

DC A =
if 1AI = 0
else let

(1, R) = DC (Alo,] || BI'2,1AI])
combine (L, R)

end

=- but that's long we can actually do
reduce combine empty (base (x) I ×€ A >

# Merge with O(n) work O(logn) span
Let n= IAl + IBI. WLOG IAI > IBI
Break into in subinstances. Each piece also O(In) in size
A

merge each piece

Skeleton

in

recursively



Asumming...

Waplit = 0 (In Ign)
Wombine = 0(In

Ssplit = 0(1gn)

Then overall...
o this is assumung B corresponds to A's split well

W(n) = In W(In) + Wsplit (n) + Wcombine (n)= In W(in) + O(In (gn )

In. (In login)
- W(n) € O (n)

Leave dominated

5(n) = SCIn)
= S(In)

+ Seplit (n)+ 0(Ign)
+ Scombine (n)

gn
Ign = =lgn Root dominated

So SCh) € 0(1g n)
#Contraction

oue piece... but recursuely solve the oue piece
• Base case ...
- Inductive case

1. Contract into one piece of size gon)2. Recurse on subinstance
3. Expand result to solve original problem

parent In logn
children

parent
chill

Break into



reduce fIS = cas IsI of0 > I
1» f(I, SIO])
-→ let

reduce fI B

shorter subproders.

W(n) = W(7) + O(n) € O(n)

S(n) = S(=) + 0(1) € O(Ign)

Ex. scan I omitted I

1, 1, 4, 3
contract

reenssive scan (10

expand (10, 2 3, 4
Wen) = W(3) + O(n) € O(n)
scn) = S(4) +0(1)

, 17)
1314> , 17)

€ O(Ign)

Ex.

in

end

scam opt 012.



Lee 8 Probability for randomised algorithmus
Exam: bring yourself. I handwritten sheet, 4 function calculator

randomised agorithms# Motivation for

- Can be• faster
I sometumes faster by constant factor
"sometimes faster asymptotically

- Can be simpler
- Break symmetry - hopefully low probalibity to choose badly

- Meditate ime
LInconsistent

"Don't know how long each fork takes when parallelised
- Need source of randomness
- Hard to analyse
Ex. Prime test

Polynomial time, simple implementation

Las Vegas algorithm random → always right answer

smulate → generate something close

randomised algorithm

Monte Carlo ala

# Ex. Random Distance Run

2 giant diceroll: how many laps for one
roll: how many more to rum

Define round vars: D, = value of 1st die
Da = value of and"die

Expected values... ELD, 1 = 3.5
ELD,] = 3.5

What about expected sum of 2 dice ELD, + D2] = 7
... expected product of 2 dice... ELD, D2] =... 12.25
... expected max E(max (D,, De)) = 4%36 = Not clearly related tomax of expectation.

and



#Probability
Sample space
Prob measure P: P(R) → R with:

1. tA, OSPCA) ≤1
2. HA,B, AnB = $ → P(A) + P(B) = P(AuB)
3.P(52) = 1

Random variable
Determistic function

neither random nor variable
X: 22 → 1R

Independent

of X

x,Y indep

E[X] = [ P(w).X(w)
WEs Prat outcome

P[X=a, x=b] = PIx=a]PLY=6]
Linearity of expectation EIX+Y] = EIX] +ELY] -
Expectation of product EIX-Y] = E[X] • ELY]
Union bound PCA) + P(B) > P(AUB)

Conditional prob P(AIB) = PLAnB)P(B)

# Entangled dice
suppose and die must be same as first die
Expected sum of dice → T

(independent)

Expected product

# Aly analysis with prob
Tail bound

expected work

Expected value

Ha,b

(always
assuming.

→ 15 %

Prob

ELW] Wt

PItail]
PEW > WE]

Work



If X>0
#Quicksort

mequality tool for bounding tail
then PIX>a]s EIXI af threshold

pick random pivot = partition → recur → append
Unlucky case:

Goal: analyse

picking bad pivot.

work if span of
W= W. + Wr

w..s. w..s, S= max (S., 52)

# High probability bound

Say WIn) E OCfon))

- okay to bound
= hard to bound

with high probability (w.h.p) if
WEn) E O( k-fon)) with probability > 1- (4)k

how much worse <

Intrutively, k1
these differenting

→ how often doesit violate bound

1(1)1
so the higher the violation the less often weare allowed to violate the bound

consider max of a spans
If we take max of n
samples now often the

Markou's

rand. alg.

define



Probability Bound Andysis

# High prob bound

Redef Say WCn) EO(fens) wh.p. if Iconstants c,no s.t.
Ins no, Uk WCn)s ckfCh) with probability > 1- (1)k

# Max of spans

Consider n spans
P P

Suppose there's & prob. that a single spom is bad
Prob that some of them bad is by union bound & he

PI Some bad] = PIl"begbad U...U ith being bad 1
piece has O(gn) whip.Ex. Suppose each

PI indiv good 1
Plindir bad]

= 1 - (1)*
= (4)k

PI some bad I En (t)k

→ Overall span is Ollgn) with prob & 1-CA)k'

# Ex. toy alg. for skittes game

composed to O(Ig n)

Game: jar start with
tip corn. itstant with ed teth half of remaining]

else noop
Question: how many rounds before run out of skittles
... worse case as ?

Lec 9

so w.h.p.



Defue random var d:= number of skittles at start of round d.
Xo = n

on by induction
num rounds & 101gn with prob 1- (i)s's

By Montou's inequality PIXign 811 & EXugal = n

Lemma: num of rounds s
let c= - (k+1)

> 1 - P[Xroign

Ign with prob
FIXagu] = n(3) elgn

c/g=

marcov stuff...

= n. n- (k+1)

Claim:
Proof.

En.n-4.15

nsis

= 1]
=

= n. n

1- (4)k

nk+1

€ O(Ign)



# Analysing random select
statistics problem

Given seq A→ One can
and nank k, return kth smallest elem of A

simply sort,simply cont wat not alicent and gen
W= O(n), 5=(lgn) w.h.p.

rselect A k = let

Eas and spent dested dem
Randomised select by contraction
Partition by pivot, then the cases...

if k< ILl then select L k
elif K= ILl then pelse rselect R (k= ILI -1)

tIpt
Op is the kith
I longer than k = recurse on L
I shorter than krecurse on R

Intuition for analyses

→50% of time picking pin that case we
between QI and Q3

25% of elems

An order

→ Goal:

in

eliminate



Random Algorithm II - Order Stats Problem Analysis

Recall: skitle game, search for kith rank in list

#Randomised select Analysis
rselect A k = let

p= uiformly randomly selected elem
(L,2) = <X€A: x<p>I|<x€A=×>p›

I kIll then select L k
elif K=ILl then pele rselect R (k-ILl - 1)

Lucky: pick pivot close to median and elimmate i
Malice: pick chore to i a mind diminate 1
Input size unknown...

at level d 0 1 2 3 .... n-2

at level d+1
7 poxible size decreases forgiven input sizen-2 n-1 n

Let Id be eV for input len at level a (Yo=n)Id be RV for rank of pinot chosen at level d.

5-3333543
= ZEPLYd=y]P[Zd==|Yd =y] f(y,z)

=§ PIYd=y] I f(y,z)
= E[PIYa=y] E $ f(y.=)]

Lec 10

in

2 3



fly.z) needs to return remanning mput size
possible fLy, z)

• y-1
0. 1. 4-20, 2.1-3

Worse case...

(fly,z)
# max (0, 2, y-z-1)

0, 7, y-z-1
0, 1, J-2

0, y-1

=7§PLYd=y] y
= ELYd]

so ELra] =n (3)d

Expected work ELW] = ELWo+ ... + Wn]

Expected span E[S]

= 20(n(2))

EL # of levels ] € OCIgn) w.hp.» EIs] € O(Igen)
(same as skittler game )

#Quicksort

gort A = if IAl sI then A else let
p= uniformly selected pivot
L.R = partition in parallel

=
Z=0

:
=2>

z= y/2
так

y -2
y-1

€ O(n)



Andysis by counting the mumber of comparisons
Defue RVs Xij =° keys ranked ij

if
1 f

Indicator RU

never compared
are compared

if xeysz and y is pivot, x and & never get compared
WLOG i<j

E[Xi.j ] = PIXij = 1] =

ELW] = O(EL# of comparisons 1)
= OlE EIX:.jI)
≤ 2>
€ O(n log n)

E(s) analysis by pivot

Hi « harmonic number

chance for picking i, j in
ander fur choosing i j

(7,5.11. 0, 9. 12, 8. i a griding riot chosen ad each not
<11,9.12.8.147

from randomised select, we found the length of one
path is O(Ign) w.hop.
PI one path > kign Is nt. for all constant ki

=i + 1 - (2! )

tree

‹ 5,0>



WTS PI I path a kalgn I ants for all constauts ke
But there are In paths. By umon bound:

nk. for all k,.
SIt as long as we choose ko=ketl



Balanced Binary Tree

Useful for
- ordered sets
- ordered tables
- sequences

Seen
- Remove, insert, fund.

- BSTs (binary search tree)

bin tree ops
- usertAt *
- deleteAt *
- with
- intersect
- union
- difference

Tree options
- AVL
- Red Black
- Treaps

- append
- ranges
- split
- парсе
= filter

* will be better than
Arrayseq

• Splay
- BTree
- Stapegoat

- Weight balanced• 2-3 tree
- Skip-list

Te man net their fat ach detec el, the perit general operations.
Binary tree

usually

Store at nodes

I internal binary tree" as we don't store

Note this is dways true:

data on the

Balanced: = height EOClogn)
height & 21g n height = Ilg(n+1)7

perfectly balanced

- Balancing nato
- Size of subtree

- Associative into (augmentation)

Lec 11 I

- AVL
- Redblack

# More

*

when

- Value
- Key



Buary Search Trees

# Sequence Tree

Buary tree t size of subtree
Inonder traversal of tree is the sequence
(b.a, c,e, d> sizes

Exposing: get rid of extra in and return barebone tree

b
a 3

/
d1



Lec 12 Balanced Binary Tree I

Today: split, union, filter, splitat
#Generic interface

(BT ADT, Treaps)

N = Leaf I Node of TxExT

- tree with augmentation. etc.- elem
- exposed form

size:

expose: T → N
empry: 7
JomM: TxExT → T OC| height L - height RI)

helpers:
singleton = Xx> jornll (empty, x, empty)
append = 1 A B → case expose A of I onlyLeaf → B

1 Node (L, X, R) = join M (L, x, append R B)

preserves BST if LaR

Impls filterworks on both BST and tree sea
filter pA = case expose A ofLeaf » empty

| Node (L, x, R) →
let (L', R') =(filter L 1l filter R) inif

Assume for now:

joiM (L', X, R')
append (L', Ri)

Witer (n = 1L1+/RI) =

O(Ign) (n= It'l+IRl, assume ILl=IRI)
2W(3) + O(lgn)

1 = 5(2) + O(gu)
€ O(lgin)

struct
type
чуре

TE
T → R 0(1)

0(1)

usually
end

px then
else

Spiter (n

€ O(n)



Imp split (BST only)

split A k = case expose A of
Nade 7. (empty, fale, emply)

EQUAL → CL, true. a x k of
→ case

ILESS → let

W=O(Ign)

(LL, b, RI) = split L k
(12, b, jomM (Ru, x, R))

end
1 GREATER → Isymmetry ]

Impl mmon

REQ A.B BSTS

(Leaf, - ) → B
, Leat) → A

1 (Node (LA, XA, RA), -) → let
-, RB) =

, expose B) of

split B >АLA LB Il union RA RB)

enjonM ( L'. XA, R')

cost analysis (assume ILl = IRI, ILa| - IRal, WOG (AISIBI)
ILAl = ILA|

W(n, m) = 2W(4, 7) + O(lgn) min ratio is came n
WCI, n.) = 19 n. "Leat-dominaled but n, =

= 19m EO(Ig (m +1)) = in case in=l

# leats = 2gm =m
cost (base) = m|g(in +1)

So OCmg (in +1)) = in fact this is also lower bound.
(spam... € O (gn (gm))

w.h.p.

im

( LB,
(L'. R') = (union LB

in



# Treaps aka Tree-Heap

Basically bin tree t heap ordering on prionity
Priority ,P: E=→ 7

(with randomisation! )

randa bad elem unique it printage enough co domain
Tree priority pr A

Det Fees presites,

x,-) » p(x)

bin tree st. Node (L, x, R) €A,

Treep has O(Ign) depth whp.
Proof stetch similar to quicksort
IRV Aij =

rank in tree

if rant i is ancestor of j
else

ELAijI =PI i ancester of jI = Ti-jitl

I Node (-,

Thu



Balanced Binary Tree III Treaps

# Distribution of tree shape

awen both, treep unique

Es came as debation quest enor he riging
height of treap E OlIgn) whip.

Create RIV Aj = fo I stil is ancestor of so Cinchsive.

depth i) = E A;

ELAj] = PI stil is ancestor of sit ]
Inturtion :

i and; are not
ancestor of each other

E [depth (j) 1 = 20 Ti-jlt = Him + Ha-j-1 ≤ 2Hn
< ZInn + 0(1)

El size (il] = ... sth simdar...

Got to have depthlj) E O(Ig n) whe
BUT Elsizeli] E O(Ig n) # size (i) € O(Ig n) whp

< 2In n +000

Lec 13

i=o
size li) =

n - 1£ Aj

j-il + 1



EE O(Ign) n size

#Treap Impl
T= Leaf I node of Tx Ex Ix T
mk Node (A. x. B)

jonM (A, x, B)
px> prA and px> pr B.prA > pr B »case expese A of

raise Absurd I we defred pr leat = - oI Node (LA, rA, RA) = mkNode (LA, rA, joinM(Ru, x, B)

x, size A + size B +1, B)
→ mkNode (A. x. B)

WE O (depth A + depth B) = each time we go down a level
sO( Ign) = aso Ollgn) whp.n= depth A + depth B

jointl preserves BST property
preserves treepPopuan always

If Table interface

Store key vals in tree, Keep invariants by keys.→ See doeumentation

# Augmentation
Adding extra information in nodes (other than just balancing info s

EE O(Ign) depth

I track size

= node
→ case

(A,

/

A< x< B



Ex. dynamic paren matching
support: type paren =

tupe dpm
insertAt
istlatched dpm → B

→ Keep track of unmatched left if unmatched right at
every node

# Reduced value augmentation
1. Associate tree T with associative func

its identity I.
2. Modify T to Keep the sum" of fat each node
3. Modify joill to maintain the " sum"

reduceVal:

dpm x paren X II > dpm

4. Add funcat root

f.ExE >E and

TE that returns the sum

Imp
functor: Exf × I → angt

T= leat 1 node of TX EX EX Ix T
reduceVal A = case expose A of leaf * I

1 node (--, 5, -, -) → s
jouM (A, x, B) =

node ( L, x, f(x, f(reduceVal A, reduceVal B), size A + size B t1, R)

(1)
OCIgn)
O(1) ?



Treaps + Ang Table

# Ang Tables
→ Treap with at each node:

Useful for... eg. interval

key, value, reduced value, size

Where is there 2 overlaps?
where is there...

More formally directed

verts connected by edges
graph G = (V, E) , n= IVI. m= IE|

I set of edges, represented by vert tupleset of verts

G = (Ea,b, c3, £ (a,b), (a, c), (b,c), (b.b) 3)

Fact msnt (tight upper bound on num edges)

num distinct graphs with a verts... 2(n')
Undirected graph G = (V, E), ES (I)

I set of sets with 2 verts

Types of Graphs

- Muttgraph G= (V, E). E is multiset

- Hypergraph G = (V,E), E = P(v)
so am edge cam link #2 verts
normal graph = 2-uniform hypergraph

Lec 14

problems

# Graphs

Informal:

Ex.



- Bipartite graph G= ((U,V). E), ESUXV, IUl=Mu, IVI=no
Fact there are 2('..no) distinct undirected bipartite graphs

Applications

- Utility graph — electricity, internet, water, gas. ...
edges = connectionsverts « location

- Dependence graph - compiler control flow,

- Social network graph

- Taxonomy graph —phynogenetics, coolution
- Mesh network

- Markou chain

- documents with links

- state graph
# Mathematical Defs

Ref Nalus is neighbourhood of u in G = EVEVIEn, SEE S
Nalu) is the outgong whors EvEV I (u, v) €E}NG(u) EVEV I (v, n)EE}
deg(u) = INGLu)l

deg+ (n) =
deg-(n) = I Na(H)l

Fength of parates tro event pet olge
Simple path is path without repeating vert nor edge
Cycle starts and end at same vertwind atSimple cycle cycle without repeating vert nor edge except at start

Def Sa (s,V) = len of shortest path from s to u in G

tressed

Def



RG (u, v) = u reachable from u to u
viz. I path from

Connected component is a subset of verts st. every undinected
vert is reachable from every other vert

Strongly connected component is subset of verts st. every ]dinered
vert is reachable from every other vert

Forest — groph without cyde
Tree — forest with one connected component

DAG - directed acyclic graph
# Graph representations

- Edge set
(Vset, (VXV) set) for some set repr

- Adjacency matrix

( (VXV) key, B value) table
Good for dense graph
Bad for sporse grouph

- Adjacency set
(V key, V set) table

Def G is dense if menz
sparse otherwise

u to o

Def _ undirected

a.

b : £c3,с : 83



- Adjacency seq
Defue £0, ...,

int seg seq
(<1,27,

- Adjacency list

n-13 « V

<2>, «>



Graph Search / Graph Traversal

Nalu) = Inbors of u 3
da (u) = degree of и8c (u, v) = distance from u to u

# Generic gnaph search

Ret Gate each spending hem one rematicals examine
Def Rals) = EVEVI u reachable from s 3

Generic traversal

of:

X= E set of
- frontier F= & next to

visited 3 S V
some visited node but not visited 3 s VIX

search Gs :
X = {3
F = 253while IFI > 0 :

met earing in upay albert of t
F = NG(X)IX

return X

Thm search G s returns Ra (s)

Dof graph cach tres is a graph built by
create edge from i to the vertex thatI' for some vert if vace condition)

Lec 15

Recall : G = (VIE)

Keep track

• visited

Alg:



# Cost Analysis
X = XuU
F = Na (X) 'X= finding nbors & set diff

Claim cost is dominated by NE(X)(assume for now )

NG(X) = UNG(U)

reduce union $ (NECU) : VEX>
a=|A| ≤ b =IB|

Wunion (a, b) = Olalg(ä+1))
Sunion (a, b) = Ol|g(a+b))

§ (exercise)< O(a+b)

union recursion tree

size = (di+da) + (derds)

Ollgn) depth

IN(v)I (NCV.N
di do

Edi & O(m) so total work O(mign)

at level & O(Ign)
overall O(lgen) *(is tight bound)

= union

Recall

=
VEX

Assume

Reduce

W

Level

i=l
5Ê dii=l

:
5Êd:

O(d. +d.)

1=1

"

But

Span :



= let
(X, F, i) =if IFI =O then (X, i)

else Alet
X' = XUF
F' = N$(F) | X

loop (X', F', it1 )
for BES this = NE(X)IX'

actually lower cost to get all nbors

im

скаф (83, 853, 0)
Claim: at 4,

X; = EvEV,
Fi = EVEV,
Proof It
Proof by

BC i=0.

8(s.v) < i 3
8(s, v) = i 3

'I'=• when bop calledwith counter i

Xo =$.
Fo = Es3.

IS Assume for i, WTS for itl

BFS on lime graph

Xia EveniEvE V, 8(s,v) ≤ i 3
= EvEV, 8(s,v) < it 13
= Na (Fi) \X it
= EvEV, 8(s,v) = it 13

# iterations O(Ign) at each iter

# Parallel BFS

When U

BFS G s
loop

= F

in
end

feels right

induction

(no)

(IH)

Fitt

O(n),



=≥ (d+(x) +1)

for iter i
assume tree set

O(lFillgn)

*OCIFill (gn)
some anaysis
0(IFilign)

BFS cost

let IFIl

- XiuFi

- N$ (Fi)

- 1 Xi+l O(Ign)



Lec 16 Graph Search Cont

# Parallel BFS cost analysis cont.

(d*(x) +1) assume tree set

for iter i

O(IlFill lan)
some anayses

O(IlFilllgn )"sumilar to union

Over all loops. Say max depth in search is d
W= OLE (I Fill lan))

= Ol Ign _(Fill)
= O(Ign. (m+n))

=Ed(x) + E 1

* one dan can be eliminated wing some

When &5 = most recently seen vert in frontier

BFS cost

let AFIl =≥
x€F

- XiuFi

- N$ (F)

IF|<IX|

- \Xi+l O(lgn)

E
i=0

#DFS

XEF

= m + n



Recursive impl
G 5 =

DFS' (X, v) = if vEX, then X

DES' (13, 5)
else iterate DFS' (XU EV3) N°Cu

- inherently sequential !
- and believed that P-complete probs don't have

believed to be P-complete

polylog span sol

Possible order: s,b,d, f. g, c, e→induced search tree:

DFS edge types

- Tree edge - 4→v if y visited from u im DFS
wiz. reversed edges in search tree

- Back edge — ede: that te back to ancestor in DES tre
edge that go to descendent in DFS tree
that's not tree edge

nove of above, they cross btwn branches
- Forward edge -

- Cross edge —
Note thesethe cages i four partition

DFS
let

in

end

Example

b

d

f

f 9



Generic DFS

Ne e ne mata arante te forcon marie wile computing 1.213
- application state Z- transition funcs EXV → E

- revisit — if already
DFS G ((E. X), v) =

if VEX then (revisit (E, v), X),else let
E' =visit (E, v),X'= X u Ev}
(E",X") = iterate (DFS G) (G'. X')

finish (E", v), X")

Sometue we wait
DFSALL (G = (V, E)) E = iterate (DFSG) (E, 83) V

Ex. application

→ DES numbering: track visit! frich timestemp
0.13 Uning our framework:

E: int x (V, int) table x (V, int) table
cuor time visit time finish time

visit ((t, V, F), v)
= (t+1, insert V (v,t),

finish ((t, V, F), v)
= (t+ 1, V, insert F (v,t))

reusit ((t, V, F), v)
= (t, V, F)

visited

in
3,

end

N*Cv)

1,12 b

2,7 d 9,10

3,4 f 95,6 F)



→ Determine edge types Creduced to start /finish time)
Keep set of tree edge in a set in I
Claims

e= (n, v) forward edge #

e= (u, v) back edge

e= (u, v) cross edge

> Cycle detection (reduced to edge type)
Claim G has cycle #I back edge

→ e not tree edge

^ e not tree edge

vie Endle gating to courte

(7) Fix first time encountering vert, in some cycle, then at
later pout we visit an incoming edge to that vert

= must visit this at later pont

Topological sort

Given DAG G = (V, E)

Observe it define partial order
a po → b

Want to sort V sit.
Lemma DAG finish time:

if aerb,

reachable from a a a #b

it respects fr

b visited before a
tDFs, b finish finish before a

c2 a visited before b

run DFSAll, return reverse funsh time order

() Trivial

→

→•...

Il



Lec 17 Kosanaju's Alg & Shortest path

#Strongly connected component (SCC)

Def A subset of werts SEV is strongly connected (SC) of
tues, tuEs, u reachable from v

If SEV is SC and is maximad, it's a stroughy connected component

Caim Contracting the SSCS gets you a DAG ice one of those sC notLe turn SSCs into verts and add edge by reachability btwn components

The SCCS problem: fund the SCCs in graph and return them
in topological order

Lemma For directed graph 6 from in fuch bet winted eat in te sce.
I viu in same SCC →
c2 v.u in diff SCC a u visited before ~ →

E3 v.u in diff SCC a u visited after v »
...otherwise u,v in scume SCC so we can't go back

EX. h

IXi



# Kosanaju's Algorithm

G = (VE) =

F= reverse FinishTime G
G'= transpose G (reverse the edges)

visitedverts a SCC sofar

(x', A) = reach G Xu
"newly visited "search for all reachable from X

• If A=$ → we saw new SCC

A=$ then (X, L) elseL+<A›)

iterate accumSCC ($, 4) F

Cost 2x DFS, so actually linear time
Trace

F» 1b e
latest finish

ga hfdei>

SCC
let

in

in
if
(x',

end

f

с d



reach G' @ b
reach G7 Eb, e, g3
reach G7 Eb, e, g3
reach G Eb, e, 93

Eb, e, g3 <Eb, e, g3>

Eb.e.g.a.d.h3

fb.e.g.a.d.h.f3d

La,d, h3 >
La, d, hs, sf3)

C = Ec,i}
I no more to add

« Eb, e, g3, ta, d, h3, £f3, Ec, i3 )

furst reach each SCC Uli via vert

=. reas left of li already completely visitez. reach

in nev finish order:

SCCs to right of Ui3. reach Gi wi will wis wait one sCh

where left / right identifed by furst appearance of vert in SCL in F

visit exactly U:
If a is current, all of « unreachable from a in 6

otherwise F is not reu finish time onder
→ a unreachable from any of a in G?

# shortest path problem

Notice 1-3 → reach Gui

weighted graph has
G = (V. E, w)

some weight for each
W:E»R

one representation G: (V, (V,IR) table) table

8(u, v) i= shortest path with min edge weights from u to o

e
9

Ea, a, h3

f →
{f3

< Eb, e,

« Eb, e,

g3,

g3,
→

Correctuess

Observe:
when ui

edge



Single-pair shortest path problem
Gwen u,v, fund 8(u, v)

Single-source
Given n,

(SSSP)
fund 8(u, v) to reachable from u

Yu, tu, fund 8(u, v)

# Priority-first search (PES) aka best-first search
Decide where to search by onder returned by some priority func

via. pick 25S F by highest prinity
Ex. beam search, A", dijkstra

Dykstra's property:

if # neg edge weights in G, let plus = mix (SCs.4) + w(u.v)

then vE VIX with smallest p(us has 8(s,v) = plu)
Dijkstra's algorithm :

use the above p as prosity in PES (record poul for each vert owhen we visit o)

88‡=5

Def (SPSP)

All-pairs

posth in F
prandy

Ex.
a b d

8 "
1 8 8



More Dijkstra & Bellman - Ford

#Priority First Search

search Gs =

v = mm p(x)

E = Na(x) 1X = (FIEU3) U(NG(UIX)

# Dijkstra property

If no negotive weight edges and defue priority
p(u) = weix (8(s,v) + W(v, r))

Y = argmin plus

then p (%) = 8 (s, Y)

Dijkstra's mit :

d(s):=0 d(x):=
p(u) = min (dox) +w(x,v))
visit dev) = p(v)

Ensures: d(v) = 8 (s,v)

Impl

as fur xE VlEs3

dijkstraPQ GS =+X@=
let se emir à of lupicate vento de a partes

(NONE, -) → X
1 (SOME (d,v), Q') »

if (v,-) EX then loop X Q'

lice an angmented frontierwith extra verts, or even priorita quere a a
delmin 2 → (Z, N) option

Lec 18

X= {3
wit
while IFI > 0:

visit
*EF
~

return X

S
100

100

else let



X'= Xu E(v,d) 3
relax (Q, (u, w)) = insert (Q,
Q"'= iterate relax Q' (NE(U))

endop X'Q"
(insert empty@

# Ditstra cost analysis
Observe paralehsm maybe possibe in → for equal weight batches and

with batch insertion enabled anene, but in generas sequential.
every edge couldusert

Operation
Q. delmur
Q.insert
T.find
T. usert
NE CU) (T. fund)

Calls to iterate
Total work

Work
Ign (= 1gm)

O((min)(gn)

could be O(1), but above
still O(lgm)

# Belleman-Ford — min dist on arbitrary graphs, but kss efficient
Ex. - convert from other probs lead to groph with neg edge- And best was to couvent cumency

when so sent max producties take neg log and fund min
Intuition: J*(s,v) = shortest path s=v with max of k edges

given s' (s,v) for all y
out rest die parate
get global: fund 8n-s **If not done at in then we

got neg cycle I take wen of these.
relax all edges

in
(d +w, u))

loop 23 (o,s))
end

Number
m7

m

possible

OCI)

4

8° (s. •)

it'



BF G= (VE) s=

if (k =lul) then
else if D =D' then
else loop D' (kt1)

NONE & neg weight cycle

hoop ESIOS U EVIa IVE VIES}} Oend

W(n, m) = O(mn) S(n,m) = O(ngm) = 0(n(gn)

SoME D



& Graph Contraction

Dijkstra
Bellmond-Ford O(nign) O(ign)
Those are single source shortest path (SSSP) problems
Asymptotically no better way to find SP given source and tanget than sssp

What if we want all pairs shortest path (APSP)?
Brute force with

# Johnson's Alg

Changing edge weight

Naive: add weight to each edge:< Bad

Potential property:

→
5 > Ф(С) = 3

Lec 19 Johnson's

So far:

Algorthm

Work

O(m gn)Olmn)
Span

O(mlgn)
Parallelism

Dijkstra?

-2

b' potential
ФСЬ) = 5

4724 →
b'



Generad case — reweight all eages by potention
spotentialw(u', v') = w(u, v) +ф(u) - (V)

8 (l', v') = S(u, v) +ф(n) - (v)
(« 8(n, v) = 8(l', v') - $(u) + $(v) )

Shortest path relax property

(a,b) relaxed i

Dummy Vertez

d(s,a) + w(a, b) = 8(s, b)
* wlab) & 8(s,b) - SCs,a)
» Wla, b) + S(s, a) - 8(s,b) >0 « looks like potential

Reduction

1. Pick potentials so that all weights = 0

2. Dijkstra frem all souree
3. Recover path lengths with s
Cost

Bellmond - Ford
O (mn)
O(nIg n)

Overall
0 (mn/gn)O(mign)Spou

# Graph contraction — gives you polylog span

→ Then arch bored as not good for paraleism.

- biconnected components
Useful for:
- Graph connectivity
- Min spawning tree

Chim

Work
Dijkstra



Edge contraction

od n

Contract by constant factor: find maximal matching and contract

greedy works, but is sequential: c

Parallel mostly movimal matching

Pat a prints,.
touching edges

de 1 • abode

512

b3 e



Lec 20 Star Contraction & Connectivity

#Graph contraction

constant fraction smaller

Graph partition := subgraph H= (V', E') with V'EV and E' =
{En,v3€Elu, vEV'3 viz. cut out verts and keep reasonable
edges

- cut edge if nEVi, NEV; , it;
Quotient graph is contracted, smaller graph

Supervert is vert in quotient that verts in orig graph "merged" to
1. Label for each part
2. Map from vert to their part label

General Contraction

BC Small graph > compute result
IC Contract Male quotient- Partition

- Turn part into vert
= Pop inter al god centere (maybe remove dup)

Expand

# Edge contraction

Solve on contrasted graph

Get result for bigger graph

When each part is a vert or one edge.

First we need to fund matching

Repr

тар

Recur



→ Cardo: Paratel assignme lina, decisions
Com flip

e sequential, aways within
e to M if possible factor of a of optimal

Flip com for each edge, contract head sit no neighbouring edge is head

This gives constout fraction on some groph but not others

→ Cyde graph • each edge & prob contracted, so E contract t
→ Star graph X. then we only contract max I edge.

# Star Contraction

Each part looks like a star with center If satellites

→ Sequential: pick center, add all ubers as satellites, remove, repeat→ Random: flip coin on each vert, turn Hinto centers, for eachH, then turn T
That to contract inter eightienter

(G = (V, E)) =

TH = 2(n, v)EE I u tail a v head 3
* point sats to centers

Vc = VI domam (Ps)
Pc = E utu: nEVc3
(Vc, Ps UPc)

= center verts
= center contract to center

W= O(ntm)
5 = 0(Ign) y with array seq

for G with n non-isdated verts, E satellites > 7

→

centers starPart
let

in

Fact

end

Cost



Contraction ag

starCoutract base expand (G=(V, E)) =
base Vif 1El =o then

else let
(V', P) = starPart (V, E)

R = starContract base expand (V', E')

expand (V, E. V', P, R)

Cost ( star contract until

Assume: Wbase = OCIvI)
Werpand = O(IVItIEl)

Sbase = 0(1)
Serpend = OC 1g (IVI+IEl)

W= O((mth) (gn) 5= 0(1g°n)
# Application: Gnaph Connectivity

Prob Given undirected G, fund all CCs by specifying them as vert cet
→ Could do BFS or DFS, but dow

Contraction alg

connectedComponents (G= (V,E)) =
if IEl = 0 then (V, EVIN: NEV3)else let

(V', P) = starPart (V, E)
E' = ¿(PIn], PEU]) : (u,v)EE I PLu] ‡ P[V] 3
(v", C) = connectedComponents (V', E')

(uNU) EP3)(V", En → CIv]:

in
end

IEl = 0)

in
end



Min Spanning Tree

Given undireted, connected graph G= (V, E), a spaning tree is tree
G' = (V, E') with E'S E

A i, paming Te CAT of wined comested weighted graph

- Apprenget ingo with min cost
Prop Given tree:

add edge creates exactly one cycle,
then removing any edge in this cycle creates tree again

Prop Light edge property ~ unique weights
I undirected, conn, weighted & with 1V1=2,vusv. lul=l,

the min edge e from U to VIll is in MST

Proof el If e is only edge btwn Ul and VIV then duh
c2 Else AFSOC e &MST, then Ie E MST that goes

btwn U and VIU, éte, and e forms cycles withe if e added to MST
Add e to the MST and remove e'. We still get
spanning tree but costs less. *

Heavy edge prop

the heavest edge in amy cycle is not in the MST
# MST Algs

All O(mign) work, span maybe different

Lec 21

# MST

Def

Apps

Prop



Kruckal

sort edges by weight

if (u,v) = ELi] not self edge:
scheck usug union find

contract (u, v),

Prim" same cost analysis as Dijkstra
PES with p(u) = min w(x. v)

Sleator - Tarjan -Ilgn method to fund heavy edge in cycle
for e= (u,v) € E:

add e to MST
if new cycle formed:

remove heavest from that cycle

Borika (1926 ish). parallel
boruvka (G = (V, E, w)) =

if IEl then o
Every step reduce by at least t
so worse case lan steps

for every vert find min weight eada é to MST
G' = contract all edges identified

recus on G' Ign possible
wure tian

star

add (u,v)

seff edge

to MST
6* self edge

Cost:

else
per Find min

[Contract
Total

m

mign
igen

end

4 → .



Lec 22 Dynamic Programming (DP)

Idea: solving subinstances and saving results in useful way
# General structure things like data

transformation may not beone of there
O. Start with some decision | optinisation / counting problem

with there at thost.find does poth me gary pating
1. Develop recursive solution

2. Recognise how to reuse results from cubinstances

3. Count mum of unique subinstances for analysis
4. Implement

- Memorsadion
- Boitom-up

#Fibonacci example

fb (n) = if (ns 1) then 1 else
Call tree fibb s

fib (n-2) + fib (n - 1)

work 0 (Ф" )
span O (n)

Result dependency

So we need 6 = n+1 unique instanceswork O(n)
span O(n)

4 3
¢ = 15+1

2 Bad: C

4



Bottom-up Impl
fib n =

let

loo a bin.
else loop

oop 110

then a
b (atb) (k+1)

# Subset sum problem (SS) NP- hard
Given set SS It and keIt, is there XES, Ex=k?
→ Actually the base for some crypto system that was broken

Even though NP-hard it's easy to fund sol for
Pseudopoly -

some iput .

Recursive sol

polynomial to k, so if kite pay fo tsi we get
SS (S, k)K.

(-, 0) > true
1(I], -) = false
1(x::xs, k) >

-hard to memorse as key
case (S,k) of

if ks x then SS (xs, k) else
SS (xs, k-x) onelse SS (xs, k)

W(n) = 2W(n-1) + 0(1)
Ex. S= [1,1,1] k=3

[1.1,11,3

exponential!

= opportunities for reuse

11,0 [], 1 I] 03.2 [3. 0],2 [3,2 [],3

K'ELO, ... K3 , IS'I€2O..... ISI3
so num unique substances is (IS| +1)(k+ 1)

in
end

5,13, 2

C7. £13.2

[1,1.3

07.2 I],3
^



If reuse results, work O(IS/ k)
spam O (ISl+1)

# Representing lookup table

Do tade at te it time, as hey, but f input has hast how
In practice try convert subunstance to integer
SS (S, k) =let

n= IS1 , use this as key to table, or even 2D array
ss' (i, k'), = (case (i, k') of(-, 0) = true
1(n, -) → false A should look up here
Ili, k'l'→ if (k« SCi]) then SS' (itl, k) exek'-SCi]) orelse SS'(itl,

ss' (0, k)
end

# Counting problem example
Count number of rooted binary tree shope with size n

shapes count

left subtree size left sabinee right subtree

in
ss'(i+1, k')

2

3
!

5

T(n) = n - 1

if nel
i=o" else



Num unique subinstances = n+1
Work per subunstance - O(n) to do the sum

spon - O(lgn) reduce opt
Overall work

Êo(lgi) eO(ngn)



# Min Edit Dist Problem

Minimise the numbers of insertions and deletions to go from Sistr to Tistr
Ex. in 3 editsABCADA → ABADC

Ag:
MED (S.T) =
let

(0, j)
1(i, 0) »

len i pree of f

MED' (IS1. 1T1)

j-1) if Sti-1] = SEj-11
else

A Exponential, but allows subinstance result
reuse here

Andysis

(151+1)(IT| +1) unque subinstanceseach subinstance has constant local work
so O(Is|ITI) work, O(IS|+ITI) span

Bottom up impl
1 23 45 6
ABCADA

Lec 23 More DP

MED' (i-1,

A
2 3
1 2

4
3

5 6
4

2
3
4

2
3 2

3D 4
5C 5 4
6 A|65

2
3 2
232

2
3

3 4
2 3

2
2
3

3



Menvisation impl
- (Magie) Memoised version of f

fun f9 li,j) = case (inj) of(0, j) >
1(i, 0) >
1(i, j) » if Sti-1] = Stj-1]

1 Memerser lib
= memoiser. memoise (f)

# Menvisation lib

fun memoise f=
let

Fer acte Cia te riche, a) 1
INONE » let

val r= f g aval -= cache := insert (! cache, a, r)in r end
" Not thread safe a

Ex. memoised fibb

fin fid then I else
g (n-1) + g(n-2)

fib' = memoiser. memoise f

val MED'

in

9: x → B
f: (x→ 3) → 9 →3

val



Meldable Priority Queues

# Meld operation

meld:QxQ→Q that unions two priority queues
Possible impl:

- balanced tree

liar heap
operations based on meld

meld

m/g(in +1)
nim or mlgn

Ig (m+n)

= case Q of
Empty >• Node (k, L, R) » (meld (L, R), Some k)

fromseq s = reduce meld Empty < singleton * : XES >
cost awaysis assuming meld is OCIg(min))

(g(n+1) =19n

Wen) = 2W(2) + O(gn)
€ 0(2'94) = O(n)

S(n) = S(7) + O(lgn)
€ O (Igen)

Bad meld (comect but out of bound)

mela (A, B) = case (A, B) of
(-, Empty ) = A'(Empty, -) = B

1 (Node (KA, LA, RA), Node (ks, LB, RB)) =

*Node Ki, the, mald (RA, 8))
else

Node CKB, LB, meld (Re, A))

Lec 24

(mEn

usert
Ign

delMinfromseqngn impl
dependent

delMin Q
(Q, None)

insert
delMm

fromseq



meld (1,5)

meld (Empty, 7)

Cost analysis

Obeere we only recurse down right subtrees (right spine)

So if right spine is short, we're efficient

meld (
/ \ 4

8

→

/
14

/
19 22

4
\

8 meld (5,

14 19 22

3/
8 4

14
/

/
19 22

→

/
8 4

/
14

/
19

22

/
8

/
14

4
/

/
19

22



Fact cost meld € OC lright spine of Al)
# Leftist queue

rank Q:= # nodes in right spine
leftist property:
V Nodel, L, R)EPQ, rank R & rank L

datatype PQ = Empty | Node (int x k x PQ xPQ)rank'& = case a of

node' (k, A, B) = if rank Be rank A thenNode (rank B + 1, k, A, B)
maintains leftist
property

Proof

Node (rank A + 1, k, B. A)

Let mir) be min size of amy leftist heap of rank r.
Claim: m(r) = 2-1.
BC r=0 = m(0) =0=2°-1 ~

a root
IC m(r) = 1+ m(r-1)

& left, smallest case s min of right
+ m(r-1)

= 1 + 2(211-1)=2'- 1
Coro rank Q & 1g(1Ql+1)

proof is that 1Q1 > 2rank a -11Q1+12 2ranke
1g (IQ|+1) = ramk Q

So size is exponential

Def
Def

Impl

else

root

to rank



Concurrent Data Structure & Work Stealing Scheduling

Rey ideas- Lock-free data structure
- Linearisation
- Compare and swap
- Concurrent deque
- Randomised stealing

Recall greedy schedulingworld we need to find work to schedule

# Working with asyne, parallel processors

Model

Assume arbitnary interleaving

can deay
can get dutched leak nate

r. « memLa]
ri = ri+l
mem [a] = r,

ret memla]
12=12+1

mem [a] = ra
mace condion a ville+1 or +2

# Lock-free data structure

Def Lock free data structure
- Supports certain operations
- Shared across processes
- Aust o-to process making proceda around entical code )

# Linearisability
Operations: load, increment push, pop

"They can appear interteaved but comectners captured sequentially

Lec 25

(CAS)

T= p+s

memory

cores

PI P2



#Compare and swap
On 186: CMPXCHG

Avalogous to:

CAS: a ref → (a xx) » bool
r (old, new) = Note this code is not safe.

Processor implements this on
hardware level as instruction

if a = old then (r:= new; true)
else false

Linearisable mcrement =no lock involved

Inc (r: int ref) =
let

+ CAs r (a, a+1) then ()
else Inc r

end

#Work stealing scheduler (randomised)
How to do fIg?

→ Fate thread id is jo chand data structure
Each processor keeps a deque DO

lock-free, liverrisable pushbot popbot

- When encountering flld on processor p
DQp. pushbot (g)

wait for result of g

• If processor p done or while waiting

CAS
let

a =!r

end

in
a =!r



casome ap. popboth of
None → repeat (randomly steal from top of another processor's DQ)

Anarysis — why this works well

'- Most of the tune stealing oron work
we prioritse push and pop from botow → good locality

Then number of steals to attempt is in O(PS)time is in O(K+s)
P= mum processors
s= span



Memoisation with parallelism

Things that can show up in 15-48, 15-312, 15-410
# Sequential impl

fun memorse f=let

tal cache = case Title cupry
NONE Tet

!cache a of

val r= f g a It muti threado can call fif they havesame a and a not in table
val - = cache:= Table insert, cache la,r)

two threads can insertat same time

Prob we often do =2 recursive
parallet, but this impl not safe for parallelism

Idea suspend execution, make sure to not race compute

calls and want to do them in

- at a, insert busy marter, at I, update actuad result
so lookup result can be busy, some, none.

- ats, handle busy case by
- busy wait
- sleep wait (OS could schedule some other work? )

- opend ji SoM battle, but note then (n, etc. )to another thread
SML: cance to suspend

throw to wake up
could just be set

put self in some queue
try wake things up ats

intalise empty quene state = wait of 1 full of p
fun 9 a

NONE »
= case Table fund! cache a ofi

insert (a, wait (empty queue)) to table;r=fga;
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in
end

Impl



I SOME (full r)

Also, make reve able and queue are lineariable
# Concurrent table

insert: ctable

I a
» (axB) → B option(a, b)
not in T, add (a, b) and return NoNE

if (a, b') in T, return SOMEb' = can retry with updatein this case
update: ctable = (x, B) → ()
let

cache = Table-empty
fure g a =

Q= Queue. empty

case (CTable. insert cache (a, wait Q)) of
SOME (full r) =r

I SOME (wait Q) =

ten se pot fund!
I NONE » : (as before)

result and return

>r


