$$
15-210
$$

Parallel and Sequential Data Structures and Algorithms

$$
\text { Fall } 2023
$$

At Carnegie Mellon University
Notes by Lómencire Mortecc.

Lee 1
Instructors: Guy Blelloch + Charlie Garrod
Today: Motivation for course content
Platform: Diderot
Lab credit caps at 80%
3 exams
\# Deconstructing course title
Parallel

- Parallel

D Sequential - special case of parallel by having $n=1$
Net using multiple cores \rightarrow wasting your time
Many algoritinus inherently parallel \rightarrow use more cores
Dependency graph

\longleftarrow Recall work and span total computation longest path

Data structure $亠$ Algoicthm

- Math Calculus, series, probability, linear algebra, proofs
- Abstraction Algorithm, interfaces, graphs, asymptotic analysis
- Python Toolbox \leftrightarrow connections \rightarrow problem, search for solution Problem solving recognise similarity btwon problems intuition
\# Example problem solving
Problem: human genome sequencing (2001, 3.1 billions of nucleotide)
String of $\{A, C, G, T\}, 3.1$ billion in length
Constraints
- Can't read more than 2000 base pairs
- Sequential read takes loos of years
\rightarrow Technique - Shotgun Method
$\left.\begin{array}{l}\text { make multiple copies } \\ \text { shatter into fragments }\end{array}\right\}$ Done in lab read each fragment $\quad \sim 1000$ long reconstruct whole sequence 3 done-m computer \uparrow try find overlaps and combine

The algorithon
Get set of all sequences read
Get rid of sequences that are subset of another Find best reconstruction
\uparrow Heuristic: find shortest superstring
Reduced problem : Shortest Substring (SS) Problem
L Also good to check if sth is NP hand LNP hard!
Informally: given set of strings, fund shortest suparsting that includes all

Problem solving
\rightarrow First try brute force solution, as long as correct try all permutations, merge overlaps, pick shortest Correct, but $O(n!)$
\rightarrow SS NP hard but has polynomial bine approximation and not all possible input instances are hard Connection Travelling Salesman Problem L given graph and distances in edges, visit all nodes with lowest distance)
Reduction: String \rightarrow vertex
$\omega\left(S_{1}, S_{2}\right) \rightarrow$ - overlap $\left(S_{1}, S_{2}\right)$
add special vertex Λ, make $\omega\left(s_{1}, \Lambda\right)=\omega\left(\Lambda, s_{1}\right)=0$ for all s_{1}, to fix cycles

Lee 2 Asymptotic Analysis, Recurrances
\# Asymptotic Analysis

- useful abstraction
L simplifies expression
- avoid machine detail '́ programming lang
- focus on details of algorithm

Def $f(n)$ asymptotically dominates $g(n)$ if $\exists c, n_{0}$ st.

$$
g(n) \leqslant c \cdot f(n) \quad \forall n>n_{0}
$$

Ex | $f(n)$ | $g(n)$ | |
| :---: | :---: | :---: |
| $2 n$ | n | Yes |
| n | $2 n$ | Yes |
| $n \lg _{n}$ | n | Yes |
| 2^{n} | $2^{\prime \cdots n}$ | No |

Notation - \lg means $\log _{2}$

- $O(f(n))=\{g \mid f$ asymptotically dominates $g\}$
$-\Omega(f(n))=\xi g \mid g$ asymptotically dominates $f\}$
- $\Theta(f(n))=O(f(n)) \cap \Omega(f(n))$
- Notation abuses...

Really means...

$$
\begin{aligned}
& * n=O\left(n^{2}\right) \quad n \in O\left(n^{2}\right) \\
& * f(n)=g(n)+O\left(n^{2}\right) \quad f(n) \in\left\{g(n)+h(n) \mid h(n) \in O\left(n^{2}\right)\right\} \\
& * O(n)=O\left(n^{2}\right) \\
& -O(f(n))=O((n(n)) \backslash \Theta(f(n)) \\
& -\omega(f(n))=O\left(n^{2}\right) \\
& -\omega(f(n)) \backslash \Theta(f(n))
\end{aligned}
$$

\# Recurrences

- Base cases, recursive cases
- Modelling recurrent functions.
- Harder to fund closed form solution
$\operatorname{msort}(A)=$ if $|A| \leqslant 1$ then A else

$$
\text { let }(L, R)=\text { mort }\left(A\left[0 \ldots \frac{|A|}{2}\right]\right) \text {, }
$$

in merge (L, R) end

$$
\text { mort }\left(A\left[\frac{|A|}{2} \ldots|A|\right]\right)
$$

$$
w_{\text {mort }}(n)=\left\{\begin{array}{l}
c_{1} \text { if } n \leq 1 \text { Convention: drop this } \\
2 w\left(\frac{n}{2}\right)+w(n)+c_{2} \text { if } n>1
\end{array} \in O(n \lg n)\right.
$$

More abused notation : $W(n)=2 W\left(\frac{n}{2}\right)+O(n)$
Tree Method - Unfold level by level and sum them assort

Consider $\omega(n)=2 \omega\left(\frac{n}{2}\right)+n^{2}$
Lo

$$
\operatorname{cost}\left(L_{1}\right)=n^{2}
$$

L.
$L_{2} \quad \frac{n}{4} \quad \frac{n}{4} \quad \frac{n}{4} \quad \frac{n}{4} \quad \operatorname{cost}\left(L_{3}\right)=4\left(\frac{n}{4}\right)^{2}$
\vdots
Li $\quad \cos t\left(L_{i}\right)=2^{i}\left(\frac{n}{2^{i}}\right)^{2}=\frac{n^{2}}{2^{i}}$

$$
\begin{aligned}
& W(n)=n^{2}+\frac{n^{2}}{2}+\frac{n^{2}}{4}+\frac{n^{2}}{8}+\cdots \text { recrrances } \text { other cases: } \\
& \in O\left(n^{2}\right) \frac{8}{\text { geometric decay }} \text { - leaf domain } \\
& \text { Aside: } \\
& 1+\alpha+\alpha^{2}+\alpha^{3}+\cdots \\
& =\frac{1-\alpha^{d+1}}{1-\alpha} \text { for } \alpha \neq 1
\end{aligned}
$$

$\sqrt{ }$ All children
Case 1: cost $($ children $(v)) \leqslant \alpha \operatorname{cost}(v) \forall$ node v and $\forall 0<\alpha<1$ then overall cost $\in O($ cost $($ root $))$

$$
\text { Proof: } \begin{aligned}
& \operatorname{cost}\left(L_{0}\right)+\cdots+\cos t\left(L_{d}\right) \\
& \leqslant \operatorname{cost}\left(L_{0}\right)+\alpha \operatorname{cost}\left(L_{0}\right)+\alpha^{2} \cos t\left(L_{0}\right)+\alpha^{d} \cos t\left(L_{0}\right) \\
& \leqslant \frac{1-x^{d+1}}{1-\alpha} \cos t\left(L_{0}\right) \\
& \leqslant \frac{1-x}{1-x} \operatorname{cost}\left(L_{0}\right)
\end{aligned}
$$

Case 2: cost (v) $\leqslant \alpha \operatorname{cost}(c h i l d r e n(v))$ for all nodes v with impute size $>n_{0}, 0<\alpha<1$. then overall cost is O (cost (base of tree)
 base of tree

Suppose same input size for each level, then overall cost $=\operatorname{cost}\left(L_{0}\right)+\cdots+\operatorname{cost}\left(L_{d-1}\right)+\cos t\left(L_{d}\right)+\operatorname{cost}\binom{$ base of }{ tree }
$\leqslant \alpha^{d} \operatorname{cost}\left(L_{d}\right)+\cdots+\alpha \cos t\left(L_{d}\right)+\operatorname{cost}\left(L_{d}\right)+\operatorname{cost}\binom{$ base of }{ tree }

Still need to compute this

Lee 3 Brick method balanced case \& substitution method
\# Brick method - more on leaf dominated case \checkmark Sum of all children
Thu Suppose $\cos t(v) \leqslant \alpha \operatorname{cost}$ (children (v)) for all nodes v with input size greater than some $n_{0}, 0<\alpha<1$. Then the overall cost is $O($ cost $($ bane et $))$

$$
\text { Ex. } \quad w(n)=3 w\left(\frac{n}{2}\right)+n
$$

$$
w(n)= \begin{cases}3 w\left(\frac{n}{2}\right)+n & n>42 \\ 2 w(n-1)+1 & 1<n \leq 42 \\ 1 & n \leq 1\end{cases}
$$

\because

Computing cost of base
Usually ... if leaves has $O(1)$ and root is leaves, cost (base of tree $\left.^{\text {co }}\right)=O($ \# leaves)
Ex. $\quad \omega(n)=a \omega\left(\frac{n}{b}\right)+\cdots$

$$
\begin{aligned}
\text { Heaves } & =a^{\log _{b} n} \\
& =n^{\log _{b} a} \text { by } a^{\log _{b} c}=c^{\log _{b} a} \\
& \in O\left(n^{k}\right)
\end{aligned}
$$

But some cases are different...

$$
\text { Ex. } \quad W(n)=W\left(\frac{n}{2}\right)+W\left(\frac{n}{3}\right)+\sqrt{n} \ldots
$$

$$
\text { local cost: } \begin{aligned}
& \operatorname{cost}\left(v_{n}\right)=\sqrt{n} \\
& \begin{aligned}
& \operatorname{cost}\left(\text { children }\left(v_{n}\right)\right)=\sqrt{\frac{n}{2}}+\sqrt{\frac{n}{3}}=\sqrt{n}\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}\right) \\
&=1.284 \sqrt{n} \\
& \text { So increasing }- \\
& \text { sometimes } \\
& \text { not the case }
\end{aligned} \text { leave dominated. }
\end{aligned}
$$

$$
\text { \# Leaves } L(n)= \begin{cases}1 & \text { if } n \leqslant 1 \\ L\left(\frac{n}{2}\right)+L\left(\frac{n}{3}\right) & \text { else }\end{cases}
$$

\# Substitution Method
aka guess and check
come up with some function
Ex. (cont) guess: $L(n)=n^{b}$ for some constant b
(BC) $L(n)=n^{b}=1^{b}=1$ for all b.
(IH) Assume for $0 \leqslant k<n, L(k)=k^{b}$.
(IS) $L(n)=L\left(\frac{n}{2}\right)+L\left(\frac{n}{3}\right)$

$$
\begin{aligned}
& =\left(\frac{n}{2}\right)^{b}+\left(\frac{n}{3}\right)^{b} \quad \text { by IH } \\
& =n^{b} \cdot\left(\frac{1}{2^{b}}+\frac{1}{3^{b}}\right)
\end{aligned}
$$

But if we want $n^{b} \cdot\left(\frac{1}{2^{b}}+\frac{1}{3^{b}}\right)=n^{b}$, we need:

$$
\frac{1}{2^{6}}+\frac{1}{3^{6}}=1
$$

§ Wolfroun alpha

$$
\begin{aligned}
b & \approx 0.788 \ldots \\
\Rightarrow L(n) & =n^{0.788 \ldots}
\end{aligned}
$$

$W(n) \in O\left(n^{0.788 \cdots}\right) \longleftrightarrow$ since leaves dominated
I if... say base case costs $O(m)$,

$$
\omega(n, m) \in O\left(\mathrm{mn}^{0.785 \ldots . .}\right)
$$

\# Brick method - balanced tree
If work balanced across levels:
asymptotically the some as imprecise defunction overall cost $\leq \max \left(\operatorname{cost}\left(L_{i}\right)\right)$. \# levels hi
highest cost level
Ex. Merge sort

$$
W(n)=2 W\left(\frac{n}{2}\right)+O(n)
$$

$O(n)$
$O(n)$
$O(n)$

Note: not all recurrences fall in one of brick cases
\# Cost models

- another layer of abstraction, time?

Some types of models..

- Random access machine (RAM) model \leftarrow Good enough for writing

$O(1)$ instructions a read, write, add, multiply. jumps, conditionals...
Sequential complexity in 122: \#instructions on RAM model
Imperfection: read write may wot be $O(1)$... (thick cache)
- IO model: non-constant read/write cost
- RAM model but multiple processors

- P-RAM model: that but all processors mun synchrononshy
- P-RAM (ω): variant to allow write at same time
- P-RAM (exclusive w) , -. disallow ..-

Problems. how do we model and partition?
maybe possible, but messy to work with
\rightarrow but asynchronous makes it even harder to program

- On top of async PRAM - Nested Parallel Work-Span Model

Lee 4 More cost model \& Array Sequence
\# Nested parallel model \leftarrow recursively define note jumps 4 exceptions break the model
e
x
c

$$
1
$$

$$
\begin{aligned}
& e_{1}+e_{2} \\
& e_{1} ; e_{2} \\
& e_{1} \| e_{2}
\end{aligned}
$$

ω
1

$$
\underset{1}{S}
$$

$$
1+S\left(e_{1}\right)+S\left(e_{2}\right)
$$

if e_{1} then e_{2} else e_{3}

$$
1+w\left(e_{1}\right)+w\left(e_{2}\right)
$$

This models Sync P-RAM pretty well
\# Dependence graph represcatation
L isomorphic to above representation

$W=\#$ nodes
S = longest path

\# Mapping nested par model to hardware
pebble game - gwen depence graph G, put up to p pebble on nodes at each step s.t. all prerequisites have a pebble, with the goal of minimising $\#$ steps
Greedy strategy - always put down $\min (r, p)$ pebbles, where $r=$ number of ready pebbles

Let $n=$ \# nodes

$$
d=\text { len of path }
$$

Claims 1. It requires at least max $\left(\left[\frac{n}{p}\right\rceil, d\right)$ steps
2. Finding optimal is NP -hard \leftarrow But we can approximate quickly aka greedy [3. Any greedy strategy will take at most $\frac{n}{p}+d$ steps, so always theorming [thun factor of 2 to optimal, usually better

Mapping

Nested model

$$
w, s
$$

$$
\begin{gathered}
\operatorname{PRAM}\binom{T=\# \text { of steps }}{p=\# \text { of processors }} \\
\max \left(\frac{w}{p}, S\right) \leqslant T \leqslant \frac{w}{P}+S
\end{gathered}
$$

We want this
to dominate ... this happens if:

$$
\begin{aligned}
& p<\frac{w}{s} \\
& \text { parallelism }=\frac{w}{s}
\end{aligned}
$$

Proof for greedy scheduling theorem
Def: node is at level l if its longest path to root is l.
Lemma: on every step, either:

1. put down P pebbels
2. finish a level

Proof AFSOC let L_{j} be longest level that all nodes are covered Then at L_{j+1} all nodes are either done or ready. Then if we put less than P pebbels and not finish the level, we're not greedy
\# Array sequences, bottom up
Data structure : array
(other impl could use hist, function, trees,...)
Prinutives for array
ali] get isth elem
$|a|$ get length
alloc (n) allocate array of length n
parallel for (for) $i=x$ to y, evaluate $e(i)$ in parallel $\sum_{i=x}^{y} W(e(i))+1 \sum_{i=x}^{N_{a x}^{y}} S(e(i))$ τ Has unaveridable side effect

Race condition : both write or one read one write \uparrow Avoid this

Implementations

$$
\begin{aligned}
& \operatorname{map} f A= \\
& R=\text { alloc }|A| \\
& \text { pFor } i=0 \text {..(|A|-1) } \\
& R[i]=f A[i] \\
& \text { net } R
\end{aligned}
$$

tabulate $f n=$
$R=$ alloc n
poor $i=0 . .(n-1)$
$R[i]=f i$
ret R

Lee 5 Sequences
\# Recall dependence graph \& pebbel game
Greedy strut take at most $\frac{w}{p}+S$
Well then at each step we either: - contribute to $\frac{w}{P_{S}}$ term

- contribute to P_{S} term
- contribute to both

So we fill $\frac{\omega}{P}+S$ by greedy scheduling
\# Work span trade off
\rightarrow which to optimise?
$\frac{W}{P}+S \ldots$ usually W first. Usually give up no more than $O(\log n)$ work for better span
\# Array seas

- Primitives $A[i]$, alloc, $|A|$, par For
- Assume partor forks as many as it nouns
append $A B=$ tab $\left(f_{n} i \Rightarrow\right.$ if $i<|A|$ then $A[i]$
else $B[i-|A|])(|A|+|B|)$

$$
w=O(|A|+|B|) \quad S=O(1)
$$

subseq .- tabulate and grab indies?

$$
w=O(t) \quad s=O(1)
$$

Nope spec says $O(1)$.
Because values not mutable we
Efficient subseq \& split mid can reference subseq
type α seq $=(\alpha$ array $*$ start $*$ end $)$
\rightarrow Then operation does index manipulation without necessarily copying part of the a array.
\# iterate, iteratePrefues, reduce, scan
iterate : $(\beta \times \underset{F}{(\beta) \beta}) \rightarrow \underset{\text { int }}{\beta+\alpha} \underset{\sim}{\beta} \rightarrow \alpha \operatorname{seq} \rightarrow \beta$

$$
w=O\left(\sum_{\substack{k}}^{\substack{n-1}\left(f\left(x_{i}, A[i]\right)\right) \quad S=w}\right.
$$

Consider:

$$
\begin{aligned}
& x=\langle\text { int }\rangle \\
& B=\text { alloc }|A| \\
& \text { for } i \text { in } 0 . .(n-1) \\
& B[i]=x \\
& x=f(x, A[i]) \\
& \text { net }(B, x)
\end{aligned}
$$

iteratePrefices : $(\beta \times \alpha \rightarrow \beta) \rightarrow \beta \rightarrow \alpha$ seq $\rightarrow(\beta$ seq $\beta)$
But if f associative and <init> is left identity of F, we can do things in parallel
\Rightarrow iterate $f I A \equiv$ reduce $f I A$
Associative funds

$$
\begin{aligned}
& + \text {, } \boldsymbol{*}, \sim \ldots \\
& f\left(\left(l_{1}, r_{1}\right),\left(l_{2}, r_{2}\right)\right)=\text { if }\left(r_{2}>l_{2}\right) \text { then }\left(l_{1}, r_{1}-l_{2}+r_{2}\right) \\
& \text { else }\left(l_{1}-r_{1}+l_{2}, r_{2}\right) \\
& \begin{aligned}
\operatorname{copy}(x, y)=\text { case } y \text { of } N O N E & \Rightarrow x \\
-\quad & \Rightarrow y
\end{aligned}
\end{aligned}
$$

Examples
Assuming $W_{\text {merge }}=O(n) S_{\text {merge }}=O(\log n)$
iterate (merge $\left)\left\rangle\langle\langle x\rangle: x \in A\rangle \leftarrow\right.\right.$ insertion sort $\begin{array}{l}W=O\left(n^{2}\right) \\ S=O(n \log n)\end{array}$
reduce (merge $\left)\left\rangle\langle\langle x\rangle: x \in A\rangle \leftarrow\right.\right.$ merge sort $\quad \begin{array}{l}w=O(n \log n) \\ S=O\left(\log ^{2} n\right)\end{array}$

Lee 6 More on sequences + techniques
\# Fitter $\quad \omega=O(n) \quad S=O(\log n)$
filter $f A=$ notation $\langle x \in A \mid F(x)\rangle$
$F=\operatorname{map}\left(f_{n} x \Rightarrow 1\right.$ if $f(x)$ else 0$) A$ $(x, l)=\operatorname{scan}$ opt 0 F
$R=\operatorname{alloc}(\ell)$ poor $i=0 . .(n-1)$:
if $(F[i]=1)$ then $R[X[i]]=A[i]$
scan to get which index the element go

$$
\begin{array}{llllllllll}
F & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\
X & 0 & 1 & 1 & 3 & 3 & 4 & 4 & 4 & 5 \\
R & V & C=7 & L
\end{array}
$$

\# Flatten
flatten $A=$

$$
\begin{aligned}
& L=\langle | s| | s \in A\rangle \\
& (x, l)=\text { scan op }+0 L \\
& R=\text { alloc } l \\
& \text { for } i=0 . .(|A|-1) \\
& \quad \text { For } j=0 . .(L[i]-1 \\
& R[x[i]+1]=(A[i])[j] \\
& \text { ret } R
\end{aligned}
$$

\# Sequences Abstractions

Defuntion

Cost mood
$L A[i]$ work
\llcorner append $A B$
Impl detail

$\begin{array}{ll}O(1) & O(\log n) \\ O(|A|+|B|) & O(\log (|A|+|B|))\end{array}$
: acth whatever
\# Math abstraction

Problem solving

map length	$\langle 2$,	3,	$1\rangle$
scan $($ op +$)$	$\langle 0$	2,	$5\rangle, 6$
R indexes	$\langle 0,1$,	$2,3,4,5\rangle$	

\# Alg design techniques

- Reduction
- Brute force
- Divide and conquer
- Contraction
- Greedy alg
- Dynamic programming
\# Reduction
Def Problem A is reducible to problem B if \forall instance of A we can :
- transform the instance to some instance of B
- solve it
- transform the solution back to a solution for A

Ex. Find max in input sequence
Bad reduction: sort it, grab last elem

\# Brute-force more confident, good parallelisation, we as baschice

- "Consider and check all possible solutions"

Ex. MCSS
\rightarrow Check all possible subregs $O\left(n^{3}\right)$ work But wasted lots of work summing independently (MCSSWSP)
Reduction: MCSS with start position i problem

$$
\begin{aligned}
\text { scan then reduce }- & O(n) \text { work } \\
& O(\lg n) \text { span }
\end{aligned}
$$

Then solve MCSS $w S P$ for all i, then reduce.
$O\left(n^{2}\right)$ work, $O(\lg n)$ span
E Better:... but still come wasted work across different start positions
(MCSSWEP)
Further reduction: MCSS with end position i problem


```
MCSSWEP \(A_{i}=\) let
\((b, v)=\) scan op \(+A[0, i]\)
prefix sum \(=\) append \(b\langle v\rangle\)
min \(P_{r e f i x}=\) reduce \(\min \infty\) prefix sum in \(v\) - min Prefix end
```

$O(n)$ work $O(\log n)$ span
Now redmanit work have overlapping scams.

New alg

$$
\begin{aligned}
& \text { MOS } A=\text { let } \\
& (b, v)=\text { scan op }+O A \\
& \text { prefix Suns }=\text { append } b\langle v\rangle \\
& \text { CminPrefues, -) }=\text { scam min } \infty \text { prefuxsum } \\
& \text { maxForEnds }= \\
& \quad\langle\text { prefix suns [i]-minPrefix }[i] \quad| 0 \leq i \leq|A|\rangle
\end{aligned}
$$

in
reduce max $-\infty$ max For Ends end

Yay $O(n)$ work $O(\log n)$ span
\uparrow
This sol took 9 years to find

Lee 7 Ag design techniques contained

* More divide and conquer

Generally...

- Base case ...
- Inductive case

1. Divide into $f(n)$ pants of $g(n)$ size
2. Recurse
3. Combine results

Skeleton

$$
\begin{aligned}
& D C A= \\
& \text { if }|A|=0 \quad \Rightarrow \\
& \text { if }|A|=1 \quad \Rightarrow \\
& \text { else let } \\
& (L, R)=D C\left(A\left[0, \frac{|A|}{2}\right] \| B\left[\frac{|A|}{2},|A|\right]\right) \\
& \text { in }
\end{aligned}
$$

combine (L, R)
end
. but that's long we can actually do reduce combine empty \langle base $(x) \mid x \in A\rangle$
\# Merge with $O(n)$ work $O(\log n)$ span
Let $n=|A|+|B|$, \quad, $L O G$, $|A|>|B|$
Break into \sqrt{n} subiustances. Each piece also $O(\sqrt{n})$ in size A

B

Binary search to fund corresponding split pouts. All searches in penrallet recursively merge each piece

Asumining...

$$
\begin{array}{ll}
W_{\text {split }}=O(\sqrt{n} \lg n) & S_{\text {split }}=O(\lg n) \\
W_{\text {combine }}=O(\sqrt{n}) & S_{\text {combine }}=O(\lg n)
\end{array}
$$

Then overall...

$$
\begin{aligned}
W(n) & =\sqrt{n} W(\sqrt{n})+W \text { split }(n)+W \text { combine }(n) \\
& =\sqrt{n} W(\sqrt{n})+O(\sqrt{n} \lg n)
\end{aligned}
$$

parent

$$
\sqrt{n} \log n
$$

children

$$
\begin{aligned}
& \text { children } \sqrt{n} \cdot(\sqrt{n} \log \sqrt{n})=n^{\frac{3}{4}} \cdot \frac{1}{2} \cdot \lg n \\
& W(n) \in O(n) \\
& \begin{aligned}
S(n) & =S(\sqrt{n})+S \text { eplit }(n)+S \text { combine }(n) \\
& =S(\sqrt{n})+O(\lg n)
\end{aligned}
\end{aligned}
$$

$$
\ldots \quad \omega(n) \in O(n)
$$

parent $\lg _{1} n$
child $\quad \lg \sqrt{n}=\frac{1}{2} \lg n$
Root dominated
So $S(n) \in O(\lg n)$

* Contraction

Break into one piece... but recursively solve the one piece

- Base case ...
- Inductive case

1. Contract into one piece of size $g(n)$
2. Recurse on subinstance
3. Expand result to solve original problem

Ex. reduce $f I S=$ cas $|S|$ of

$$
\begin{aligned}
& O \Rightarrow I \\
& 1 \Rightarrow f(I, S[0]) \\
& -\Rightarrow \text { let } \\
& B=\langle f(S[2 i], s[2 i+1])| 0 \leqslant i\left\langle\frac{1 s 1}{2}\right\rangle \\
& \text { in }
\end{aligned}
$$

$$
\text { reduce } f I B
$$

end

Shorter subprobleurs...

$$
\begin{aligned}
& W(n)=W\left(\frac{n}{2}\right)+O(n) \in O(n) \\
& S(n)=S\left(\frac{n}{2}\right)+O(1) \quad O(\lg n)
\end{aligned}
$$

Ex. scan [omitted]

$$
\begin{aligned}
& W(n)=W\left(\frac{n}{2}\right)+O(n) \in O(n) \\
& S(n)=S\left(\frac{n}{2}\right)+O(1) \quad
\end{aligned}
$$

Lee 8 Probability for randomised algorithms
Exam: bring yourself, I handwritten sheet, 4 function calculator
\# Motivation for randomised algorithms

- Can be faster
L sometimes faster by constant factor
L sometimes faster asymptotically
- Can be simpler
- Break symmetry - hopefully low probalibity to choose badly
- Unpredictable
L Running time
L Inconsistent
L Don't know how long each fork takes when parallelised
- Need source of randomness
- Hard to analyse

Ex. Prime test randomised algorithm Polynomial time, simple implementation

Las Vegas algorithm random \rightarrow always right answer
Monte Carlo alg
Random Distance Run
2 giant dice
$1^{\text {st }}$ roll : how many laps for one
$2^{\text {nd }}$ roll : how many more to rum
Define round vars: $D_{1}=$ value of $1^{\text {st }}$ die
$D_{2}=$ value of $2^{\text {nd }}$ die
Expected values...

$$
\begin{aligned}
& E\left[D_{1}\right]=3.5 \\
& E\left[D_{2}\right]=3.5
\end{aligned}
$$

Multiplication works if independent

What about expected sum of 2 dice $\quad E\left[D_{1}+D_{2}\right]=7$ expected product of 2 dice... $E\left[D_{1} D_{2}\right]=\cdots 12.25$
\ldots expected $\max E\left(\max \left(D_{1}, D_{2}\right)\right)=4^{17} / 36<$ Not clearly related to
\# Probability

Sample space $\quad \Omega$
Prob measure $P: P(\Omega) \rightarrow \mathbb{R}$ with:

$$
\begin{aligned}
& \text { 1. } \forall A, \quad 0 \leqslant P(A) \leqslant 1 \\
& \text { 2. } \forall A, B, \quad A \cap B=\varnothing \Rightarrow P(A)+P(B)=P(A \cup B) \\
& \text { 3. } P(\Omega)=1
\end{aligned}
$$

Random vainable neither random nor variable Determistic function $X: \Omega \rightarrow \mathbb{R}$

Expected value of $X \quad E[X]=\sum_{\omega \in \Omega} \underset{\substack{ \\\text { phot of }}}{P(\omega)} \cdot X(\omega)$
Independent X, Y indep if

$$
P[X=a, Y=b]=P[X=a] P[Y=b] \quad \forall a, b
$$

Linearity of expectation $E[X+Y]=E[X]+E[Y] \leftarrow$ (always
Expectation of product $E[X \cdot Y]=E[X] \cdot E[Y]<\binom{$ asemuming }{ independent }
Union bound $P(A)+P(B) \geqslant P(A \cup B)$
Conditional prob $\quad P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
\# Entangled dice
Suppose $2^{\text {nd }}$ die must be same as first die
Expected sum of dice $\rightarrow 7$
Expected product $\rightarrow 15 \frac{1}{6}$
\# Alg analysis with prob
Tail bound

Markov's inequality tool for bounding tail
If $x \geqslant 0$ then $P[x>a] \leqslant \frac{E[x]}{a} \quad \forall a$
\# Quicksort
pick random pivot \rightarrow partition \rightarrow recur \rightarrow append unlucky case: picking bad pivot.
Goat: analyse work \& span of rand. alg.

$$
\begin{array}{ll}
w=w_{1}+w_{2} & \leftarrow \text { okay to bound } \\
w_{1}, S_{1} \\
w_{1}, S_{2} & =\max \left(S_{1}, S_{2}\right)
\end{array} \leftarrow \text { hand to bound }
$$

\# High probability bound
Say $W(n) \in O(f(n))$ with high probability (w.h.p) if $W(n) \in O(k \cdot f(n))$ with probability $>1-\left(\frac{1}{n}\right)^{k}$ how much worse $<\underset{\begin{array}{c}\text { we conn define } \\ \text { these differently }\end{array}}{\longrightarrow}$ how often does $\begin{array}{ll}\text { Intuitively, } & k \uparrow \quad 1-\left(\frac{1}{n}\right)^{k} \uparrow \\ & s o \text { the higher the violation the less often we } \\ \text { are allowed to violate the bound }\end{array}$

Consider max of n spans

Lee 9 Probability Bound Analysis
\# High prob bound
Redef Say $W(n) \in O(f(n))$ w.h.p. if \exists constants c, n_{0} s.t. $\forall n>n_{0}, \forall k W(n) \leqslant c k f(n)$ with probability $\geqslant 1-\left(\frac{1}{n}\right)^{k}$
\# Max of spans
Consider n spans

Suppose there's 2 prob. that a single span is bad Prob that some of them bad is by union bound $s n \varepsilon$ $P[$ Some bad $]=P\left[1^{\text {ts }}\right.$ beng bad $U \cdots U n^{\text {th }}$ being bad $]$
Ex. Suppose each piece has $O(\lg n)$ w.h.p.
$P[$ indic good $]=1-\left(\frac{1}{n}\right)^{k}$
$P\left[\right.$ indic bad] $=\left(\frac{1}{n}\right)^{k}$
$P[$ some bad $] \leqslant n\left(\frac{1}{n}\right)^{k}=\left(\frac{1}{n}\right)^{k-1}$

$$
=\left(\frac{1}{n}\right)^{k^{\prime}} \quad \forall k^{\prime}
$$

\Rightarrow Overall span is $O(\lg n)$ with prob $\geqslant 1-\left(\frac{1}{n}\right)^{k^{\prime}}$ so w.h.p. composed to $O(\lg n)$
\# Ex. toy alg. for skittles game
Game: jar start with n skittles
flip coin, if head eat [half of remaining]
else nook
Question how many rounds before run out of skittles
\ldots worse case ∞ ?

Define random var $X_{d}:=$ number of skittles at start of round d.

$$
\begin{aligned}
& X_{0}=n \\
& \mathbb{E}\left[X_{d+1}\right]=\frac{1}{2} \mathbb{E}\left[X_{d}\right]+\frac{1}{2}\left[\frac{\mathbb{E}\left[X_{d}\right]}{2}\right] \\
& \leqslant \frac{3}{4} \mathbb{E}\left[X_{d}\right]
\end{aligned}
$$

$\Rightarrow \mathbb{E}\left[X_{d}\right] \leqslant n\left(\frac{3}{4}\right)^{d} \sim$ by induction
Claim: mum rounds $\leqslant 10 \lg n$ with prob $1-\left(\frac{1}{n}\right)^{3.15}$
Proof.

$$
\begin{aligned}
\mathbb{E}\left[X_{\log n}\right] & \leqslant n\left(\frac{3}{4}\right)^{10 \lg n} \\
& =n \cdot n^{10 \lg \frac{3}{4}} \\
& \approx n \cdot n^{-4.15} \\
& =\frac{1}{n^{3.15}}
\end{aligned}
$$

By Markov's inequality $P\left[X_{10 \lg n} \geqslant 1\right] \leqslant \frac{E\left[X_{\operatorname{logg} n}\right]}{1}=\frac{1}{n^{3.5}}$

$$
\begin{aligned}
\Rightarrow P\left[X_{10 \lg n}<1\right] & =P\left[X_{10 \lg n}=0\right] \\
& >1-P\left[X_{10 \lg n} \geqslant 1\right] \\
& =1-\frac{1}{n^{3 / 5}}
\end{aligned}
$$

Lemma: un m of rounds $\leqslant \frac{-(k+1)}{\lg \left(\frac{3}{4}\right)} \lg n$ with prob $\geqslant 1-\left(\frac{1}{n}\right)^{k}$

$$
\text { Let } \begin{aligned}
c=\frac{-(k+1)}{\lg \left(\frac{3}{4}\right)} \cdot \mathbb{E}\left[x_{c \lg n}\right] & \leqslant n\left(\frac{3}{4}\right)^{c \lg n} \\
& =n \cdot n^{c \lg \frac{3}{4}} \\
& =n \cdot n^{\left(\frac{-(k+1)}{\lg \left(\frac{3}{4}\right)}\right) \lg \frac{3}{4}} \\
& =n \cdot n^{-(k+1)} \\
& =\frac{n}{n^{k+1}} \\
& =\left(\frac{1}{n}\right)^{k} \\
& \in O(\lg n)
\end{aligned}
$$

\# Analysing random select
An order statistics problem
Given seq A and rank k, return $k^{\text {th }}$ smallest elem of A \rightarrow One can simply sort, but not efficient enough

$$
w=O(n \lg n), \quad S=O\left(\lg ^{2} n\right)
$$

\rightarrow Goal: $\quad \omega=O(n), \quad S=\left(\lg ^{2} n\right)$ w.h.p.
reelect A $k=$ let
$P=$ uniformly randomly selected elem

$$
\left.(L, R)=\left\langle x \in \vec{A}: x\langle p\rangle \| \sum_{x} \in A: x\right\rangle p\right\rangle
$$

in
if $k<|L|$ then select $L k$
elf $K=|L|$ then P eke reelect $R(k-|L|-1)$

Randomised select by contraction Partition by pivot, then the cases... $\longmapsto \mid p \longmapsto R$
(1) p is the k^{+h}
(2) L longer than $k \Rightarrow$ recurve on L
(3) L shorter than $K \Rightarrow$ recurs on R

Intuition for analysis

$\rightarrow 50 \%$ of time picking P between Q1 and Q3 in that case we eliminate 25% of elem

Lee 10 Random Algorithm II - Order Stats Problem Analysis

Recall: skittle game, search for k-th rank in list
\# Randomised Select Analysis
reelect $A \mathrm{k}=$ let
$p=$ miformly randomly selected elem

$$
(L, R)=\langle x \in \vec{A}: x\langle p\rangle \|\langle x \in A=x\rangle p\rangle
$$

in
if $k<I L I$ then select $L k$
elf $K=|L|$ then P
else reelect $R(k-|L|-1)$

Lucky: pick pivot close to median and eliminate $\frac{1}{2}$
Unlucky: pick close to min I max and eliminate I
Midhck : pick sth between and eliminate $\frac{1}{4}$
Input size unknown...

at level $d+1 \quad 0,1,3 \ldots n+2 n-1 \quad n$ input sire
Let $Y d$ be RV for input len at level $d \quad\left(Y_{0}=n\right)$
Z_{d} be RV for rank of pivot chosen at level d.

$$
\begin{aligned}
\mathbb{E}\left[Y_{d+1}\right]= & \sum_{y} \sum_{z} P\left[Y_{d}=y, Z_{d}=z\right] f(y, z) \\
& \text { prob of hawing input } f \text { lem of }] \\
& \text { rank } y \text { and picking remaining previous input? } \\
& \text { level. corresponds to } \\
& \text { each edge. } \\
= & \sum_{y} \sum_{z} P\left[Y_{d}=y\right] P[Z d=z \mid Y d=y] f(y, z) \\
= & \sum_{y} \sum_{z} P\left[Y_{d}=y\right] \frac{1}{y} f(y, z) \\
= & \sum_{y}\left[P\left[Y_{d}=y\right] \sum_{z} \frac{1}{y} f(y, z)\right]
\end{aligned}
$$

$f(y, z)$ needs to return remaining spout size

z	possible $f(y, z)$
0	$0, y-1$
1	$0,1, y-2$
2	$0,2, y-3$

Worse case...

1	$0,1, y-2$
2	$0,2, y-3$
\vdots	$0, z, y-z-1$

$\sum_{z} f(y, z)$

$$
=\sum_{z=0}^{y-1} \max (0, z, y-z-1)
$$

$z \quad 0, z, y-z-1$
$=2 \sum_{z=y / 2}^{y-1} z$
$\begin{array}{cc}y-2 \quad 0,1, y-2 \\ y-1 \quad 0, y-1 \\ {\left[P\left[Y_{d}=y\right]\right.} & \left.\frac{1}{y} \frac{3}{4} y^{2}\right]\end{array}$
$=\frac{3}{4} \sum_{y} P\left[Y_{d}=y\right] y$

$$
=\frac{3}{4} \mathbb{E}\left[Y_{d}\right]
$$

So $\mathbb{E}\left[Y_{d}\right] \leq n\left(\frac{3}{4}\right)^{d}$
Expected work $\mathbb{E}[w]=\mathbb{E}\left[\omega_{0}+\cdots+\omega_{n}\right]$

$$
\begin{aligned}
& =\sum_{d=0}^{n} \mathbb{E}\left[w_{d}\right] \\
& =\sum_{d=0}^{n} O\left(n\left(\frac{3}{4}\right)^{d}\right) \\
& \in O(n)
\end{aligned}
$$

Expected span $\mathbb{E}[S]$
$\mathbb{E}[\#$ of levels $] \in O(\lg n)$ w.h.p.
(same as skittles game)
$\Rightarrow \mathbb{E}[s] \in O\left(\lg ^{2} n\right)$
\# Quicksort
ont $A=$ if $|A| \leq 1$ then A eke let
$P=$ uniformly selected pivot
$L, R=$ partition in parallel
$L^{\prime}, R^{\prime}=$ qsort $L \|$ qseart R
in $L^{\prime}+\langle p\rangle+R^{\prime}$ end

Analysis by counting the number of comparisons
Define RVs $\quad X_{i, j}=\left\{\begin{array}{lll}0 & \text { if keys ranked } i, j & \text { never compared } \\ 1 & \text { if } \ldots . & \text { are compared }\end{array}\right.$
Indicator RV
Observe: the pivot gets compared to everything. things only get compared if they get picked as pivot and they they don't get compared in recursive calls
if $x<y<z$ and y is pivot, x and z never get compared
WLOG $i<j$

$$
\mathbb{E}\left[X_{i, j}\right]=P\left[X_{i, j}=1\right]=\frac{1}{j-i+1}(2!)
$$

- order for choosing i, j
chance for picking i, j in

$$
\begin{aligned}
\mathbb{E}[W] & =O(\mathbb{E}[\# \text { of comparisons }]) \\
& =O\left(\sum_{i<j} \mathbb{E}\left[x_{i, j}\right]\right) \\
& \leqslant 2 \sum_{i=0}^{n} H_{i} \leftarrow \text { harmonic number } \\
& \in O(n \log n)
\end{aligned}
$$

$\mathbb{E}(S)$ analysis by pivot tree

- recursion tree showing the pivot chosen at each node $\langle 7,5,11,0,9,12,8,14\rangle$, always picking first

from randomised select, we found the length of one path is $O(\lg n)$ w.h.p.
$P[$ one path $>k, \lg n] \leq \frac{1}{n^{k}}$. for all constant k_{1}

UTS $P\left[\exists\right.$ path $\left.>k_{2} \lg n\right]<\frac{1}{n^{k_{2}}}$ for all constants k_{2}
But there are <n paths. By union bound:

$$
\begin{aligned}
P\left[\exists \text { path } \geqslant k_{2} \lg n\right] & \leqslant n \cdot \frac{1}{n^{k}} \text { for all } k_{1} \text {. } \\
& \leqslant \frac{1}{n^{k_{2}}} \text { as long as we choose } k_{1}=k_{2}+1
\end{aligned}
$$

Lee 11 Balanced Binary Tree I

Useful for

- ordered sets
- ordered tables
- sequences

Seen

- Remove, insert, fund.
- AVI
- Red black
- BSTs (binary search tree)
\# More bin tree ops
- iusertAt *
- deleteAt
- auth
- intersect
- union
- difference
- append
- ranges
- split
- map
- reduce
- filter

Tree options

- AVI
- Red Black
- Treaps
- Splay
- BTree
- Skapegoat
* will be better than Amrayseq

So many of them. Want to abstract all the options. Assume there's joinllid for each tree type, implement general operations.

Binary tree
$b^{a} \backslash c$ "internal binary tree" as we don't store

Def Balanced : = height $\in O(\log n)$ usually height $\leq 2 \lg n$

Note this is always true:
height $\geqslant\lceil\lg (n+1)\rceil$
height $=\lceil\operatorname{Ig}(n+1)\rceil$ when perfectly balanced

Store at nodes

- Value - Balancing ufo - Associative info (augmentation)
- Key - Size of subtree

Binary Search Trees
Def \forall node, $\begin{cases}\forall k \in \text { Left, } & k<\operatorname{root} \\ \forall k \in \text { Right, } & \text { root }<k\end{cases}$
\# Sequence Tree
Binary tree + size of subtree
Inorder traversal of tree is the sequence $\langle b, a, c, e, d\rangle$ sizes

Exposing: get rid of extra info and return barebone tree

Lee 12 Balanced Binary Tree II (BT ADT, Treaps)
Today: split, union, filter, split At

* Generic interface
strict
type T
type E
type $N=$ Leaf 1 Node of $T \times E \times T \quad$ - exposed form
size: $T \rightarrow \mathbb{Z}$
expose : $T \rightarrow N$
empty : T
join $M: T \times E \times T \rightarrow T$
end
helpers:
singleton $=\lambda x \Rightarrow \operatorname{join} M$ (empty, x, empty)
append $=\lambda A \quad \leftarrow$ only preserves $B S T$ if $L<R$
Leaf $\Rightarrow B$
I $\operatorname{Node}(L, x, R) \Rightarrow \operatorname{join} M(L, x$, append $R B)$
Impls filter
works on both BST and tree seq
filter $P A=$ case expose A of
Leaf \Rightarrow empty
$\mid \operatorname{Node}(L, x, R) \Rightarrow$
let $\left(L^{\prime}, R^{\prime}\right)=($ filter $L \|$ filter $R)$ in
if $P \times$ then $\operatorname{jom} M\left(L^{\prime}, x, R^{\prime}\right)$
else append (L^{\prime}, R^{\prime})
Assume for now:
join M, append O both sequential $O(\lg n) \quad\left(n=\left|L^{\prime}\right|+\left|R^{\prime}\right|\right.$, assume $\left.|L|=|R|\right)$

$$
\begin{aligned}
W_{\text {fitter }}(n=|L|+|R|) & =2 W\left(\frac{n}{2}\right)+O(\lg n) \\
& \in O(n)
\end{aligned}
$$

Sifter Cn

$$
\begin{aligned}
) & =S\left(\frac{n}{2}\right)+O(\lg n) \\
& \in O\left(\lg ^{2} n\right)
\end{aligned}
$$

Impl split (BST only)
REQ EST A
ENS return $(\varepsilon x \in A|x<k \xi, k \in A, \xi x \in A| x>k\}): T \times \mathbb{B} \times T$
split $A k=$ case expose A of
Leaf \Rightarrow (empty, false, empty)
I Node $(L, x, R) \Rightarrow$ case $\operatorname{cup} x k$ of EQUAL $\Rightarrow(L$, true, $R)$
I LESS \Rightarrow let

$$
\left(L_{L}, b, R_{L}\right)=\text { split } L k
$$

in

$$
\left(L_{2}, b, \operatorname{jom} M \quad\left(R_{L}, x, R\right)\right)
$$

end
। GREATER \Rightarrow [symmetry]
ImpI ninon
REQ A.B BETs
ENS BST with set of all keys in A, B
ion $A B$ case (expose A, expose B) of (Leaf, -) $\Rightarrow B$
$1($, Leaf $) \Rightarrow A$
$1\left(\operatorname{Node}\left(L_{A}, x_{A}, R_{A}\right), \ldots\right) \Rightarrow$ let $\left(L_{B},-, R_{B}\right)=$ split $B x_{A}$

$$
\left(L^{\prime}, R^{\prime}\right)=\left(\text { union } L_{A} L_{B} \| \text { ion } R_{A} R_{B}\right)
$$

in

$$
\begin{aligned}
& \text { jam } M\left(L^{\prime}, x_{A}, R^{\prime}\right) \\
& \text { end }
\end{aligned}
$$

$$
\begin{array}{rlr}
W(n, m) & =2 W\left(\frac{m}{2}, \frac{n}{2}\right)+O(\lg n) & m-n \text { ratio is same } \\
W\left(1, n_{1}\right) & =\lg n_{1} \\
& =\lg \frac{n}{m} \in O\left(\lg \left(\frac{n}{m}+1\right)\right) \leftarrow \text { in case } \frac{n}{m}=1 & \text { but } n_{1}= \\
\# \text { leafs } & =2^{\lg m}=m \\
\text { cost }(\text { base })=m \lg \left(\frac{n}{m}+1\right) &
\end{array}
$$

So $O\left(m \lg \left(\frac{n}{m}+1\right)\right) \leftarrow$ in fact this is also lower bound.
(Spam ... $\in O(\lg n \lg m))$
\# Treaps aka Tree-Heap
(with randomisation!)
Basically bin tree + heap ordering on priority
Priority $\mathbb{P} P: \begin{aligned} & \mathbb{E} \rightarrow \mathbb{Z} \\ & \text { elem un }\end{aligned} \stackrel{\vee \text { can assume for large enough co-domain }}{ }$ "random hash" elem \mapsto unique int priority
Tree priority pr $A=$ case expose A of
Leaf $\Rightarrow-\infty$
I Node (, , $x, \ldots) \Rightarrow p(x)$
Def Treap A satisfies: A is bin tree st. $\forall \operatorname{Node}(L, x, R) \in A$, $p(x)>\operatorname{pr}(L) \quad p(x)>\operatorname{pr}(R)$

Thu Treap has $O(\lg n)$ depth why.
Proof sketch simile to quicksort $\operatorname{IRV} A_{i, j}= \begin{cases}1 & \text { if rank } i \text { is ancestor of } j \\ 0 & \text { else }\end{cases}$ rank in tree

$$
E\left[A_{i, j}\right]=P[i \text { ancestor of } j]=\frac{1}{|i-j|+1}
$$

Lee 13 Balanced Binary Tree III Treaps
Treas: - in treas ordering

- optionally must be a BST
\# Distribution of tree shape
\checkmark thick picking pinot by assigning
It's same as distribution of quictsoost recursion tree \downarrow height of treas $\in O(\lg n)$ w.h.p.

Create RIV $A_{j}^{i}= \begin{cases}1 & \text { if } S_{[i]} \text { is ancestor of } S_{[j]} \text { (inclusive) } \\ 0 & \text { else }\end{cases}$

$$
\begin{aligned}
& \operatorname{depth}(j)=\sum_{i=0}^{n-1} A_{j}^{i} \quad \text { size }(i)=\sum_{j=0}^{n-1} A_{j}^{i} \\
& \left.\mathbb{E}\left[A_{j}^{i}\right]=\mathbb{P}\left[s_{[i]} \text { is ancestor of } S_{i j}\right]\right]=\frac{1}{|j-i|+1}
\end{aligned}
$$

Intention :
i and j are not ancestor of each other $\Leftrightarrow \exists k$ st. $p k>\left\{\begin{array}{l}p i \\ p j\end{array}\right.$

$$
\begin{aligned}
\mathbb{E}[\operatorname{depth}(j)]=\sum_{i=0}^{n-1} \mathbb{E}\left[A_{j}^{i}\right]=\sum_{i=0}^{n-1} \frac{1}{i-j \mid+1}=H_{j+1}+H_{n-j}-1 & \leq 2 H_{n} \\
& \leqslant 2 \ln n+O(1) \\
\mathbb{E}[\text { size }(i)]=\cdots \text { shh similar } \cdots &
\end{aligned}
$$

Got to have $\operatorname{depth}(j) \in O(\lg n)$ why
BUT $\mathbb{E}[$ size $(i)] \in O(\lg n) \nRightarrow$ size $(i) \in O(\lg n)$ why

\# Treas Imp
$T=$ leaf \mid node of $T \times \mathbb{E} \times \mathbb{Z} \times T$
$m k \operatorname{Node}(A, x, B) \Rightarrow \operatorname{node}(A, x$, size $A+$ sire $B+1, B)$
$\operatorname{jormM}(A, x, B) \Rightarrow$ case
$p x>\operatorname{pr} A$ and $p x>\operatorname{pr} B \Rightarrow \operatorname{mkNode}(A, x, B)$
$\operatorname{pr} A>\operatorname{pr} B \Rightarrow$ case expose A of
leaf \Rightarrow raise Absurd "1 we defused pr leaf $=-\infty$
I $\operatorname{Node}\left(L_{A}, r_{A}, R_{A}\right) \Rightarrow m k \operatorname{Node}\left(L_{A}, r_{A}, j \operatorname{join} M\left(R_{L}, x, B\right)\right.$

$W \in O$ (depth $A+\operatorname{depth} B) \leftarrow$ each time we go down a level $\subseteq O(\ln n, \ln n) \quad n=\operatorname{depth} A+\operatorname{depth} B$ $\leq O(\lg n) \leftarrow$ also $O(\lg n)$ why.
join ll preserves BST property if $A<x<B$ preserves treap invar always
\# Table interface
Store key vals in tree, keep invariants by keys.
\rightarrow See documentation
\# Augmentation
Adding extra information in nodes (other than just balancing info)

Ex. dynamic paren matching
support: type paren $=(1)$
type dm

$$
\begin{array}{ll}
\text { insertAt dim } \times \text { paren } \times \mathbb{Z} \rightarrow \text { dpm } & O(\operatorname{lgn} n \\
\text { is Matched dpm } \rightarrow \mathbb{O}(1) ?
\end{array}
$$

\rightarrow Keep track of unmatched left \& unmatched right at every node
\# Reduced value augmentation

1. Associate tree T with associative func $f: \mathbb{E} \times \mathbb{E} \rightarrow \mathbb{E}$ and its identity I.
2. Modify T to keep the "sum" of f at each node
3. Modify joinll to maintain the "sum"
4. Add func reduceVal: $T \rightarrow \mathbb{E}$ that returns the sum at root

Imp l
functor: $\mathbb{E} \times f \times I \rightarrow$ aug T
$T=$ leaf 1 node of $T \times \mathbb{E} \times \mathbb{E} \times \mathbb{Z} \times T$ reduce val $A=$ case expose A of leaf $\Rightarrow I$ $1 \operatorname{node}(-,-, s,-,-) \Rightarrow s$
$\operatorname{join} M(A, x, B)=$
$\operatorname{node}(L, x, f(x, f($ reduceval A, reduce Val $B), \operatorname{sice} A+\operatorname{size} B+1, R)$

Lee 14 Treaps + Aug Table
\# Aug Tables
\rightarrow Treap with at each node: key, value, reduced value, size Useful for ... eg. interval problems

Where is there 2 overlaps?
where is there ...
\# Graphs
Informal: verts connected by edges
More formally directed graph $G=(V, E), \quad n=|V|, m=|E|$
set of edges, represented by vert tuple set of vents

$$
G=(\{a, b, c\},\{(a, b),(a, c),(b, c),(b, b)\})
$$

Fact $m \leqslant n^{2}$ (tight upper bound on mum edges) mum distinct graphs with n verts... $2^{\left(n^{2}\right)}$
Undirected graph $G=(V, E), E \leq\binom{ V}{2}$
set of sets with 2 vert
Types of Graphs

- Multgraph $G=(V, E), E$ is multiset

- Hypergraph $G=(V, E), E=P(V)$
so an edge can link $\neq 2$ verts normal graph $\Rightarrow 2$-uniform hypergraph
- Bipartite graph $G=((U, v), E), E \subseteq U \times v,|u|=u_{u},|v|=n_{v}$

Fact there are $2^{\left(n_{n} \cdot n_{v}\right)}$ distinct undirected bipartite graphs
Applications

- Utility graph - electricity, internet, water, gas, ... vert \leftarrow location edges \leftarrow connections
- Dependence graph - compiler control flow,
- Social network graph
- Taxonomy graph - phynogenetics, evolution
- Mesh network
- Markov chain
- documents with links
- state graph
\# Mathematical Defs
Def $N_{G}(u)$ is neighbourhood of u in $G=\{v \in V \mid\{u, v\} \in E\}$
$\left.\begin{array}{l}N_{G}^{+}(u) \text { is the outgoing ubors } \quad \begin{array}{l}\xi v \in V \mid(u, v) \in E\} \\ N_{G}^{G}(u)\end{array} \quad\{v \in V \mid(v, u) \in E\}\end{array}\right] \begin{aligned} & \text { dor }\end{aligned}$

$$
\begin{aligned}
\operatorname{deg}(u) & =\left|N_{G}(u)\right| \\
\operatorname{deg}^{+}(u) & =\left|N_{G}^{+}(u)\right| \\
\operatorname{deg}^{-}(u) & =\left|N_{G}^{G}(u)\right|
\end{aligned}
$$

Def Path is an alternating seq of vert \& edges
Length of path is mum edges in path
Simple path is path without repeating vert nor edge Cycle starts and end at same vert
Simple cycle cycle without repeating vert nor edge except at start
Def $\delta_{G}(s, v)=$ Len of shortest path from s to v in G
$R_{G}(u, v)=v$ reachable from u to v viz. \exists path from u to v

Connected component is a subset of verts sit. every $]$ undirected
vert is reachable from every other vent vert is reachable from every other vent
Strongly connected component is subset of verts s.t. every $]$ directed vert is reachable from every other vert

Def Forest - graph without cycle
Tree - forest with one corrected component]
DAG - directed acyclic graph
\# Graph representations

- Edge set
(V set, ($V \times V$) set) for some set rep
Edge membership query \rightarrow whatever lookup cost is in set rear Check nborhood \rightarrow filter edges set then map to extract... OC)
- Adjacency matrix
$((V \times V)$ key, B value $)$ table
Good for dense graph Bad for sparse graph

Def G is dense if $m \simeq n^{2}$ sparse otherwise

- Adjacency set
(V key, V set) table

$$
\left\{\begin{array}{l}
a:\{b, c\}, \\
b:\{c\}, \\
c:\{\xi
\end{array}\right\}
$$

- Adjacency seq

Define $\{0, \ldots, n-1\} \leftrightarrow V$
int seq seq

$$
\langle\langle 1,2\rangle,\langle 2\rangle,\langle \rangle\rangle
$$

- Adjacency list

Lee 15 Graph Search / Graph Traversal
Recall:

$$
\begin{aligned}
& G=(V, E) \\
& N_{G}(u)=\{\text { ubors of } u\} \\
& d_{G}(u)=\text { degree of } u \\
& \delta_{G}(u, v)=\text { distance from } u \text { to } v
\end{aligned}
$$

\# Generic graph search
Def Graph search / traversal is when we systematically examine nodes in a graph starting from some vert v.

Def $R_{G}(s)=\xi v \in V \mid v$ reachable from $\left.s\right\}$
Generic traversal
Keep track of:

- visited $X=\xi$ set of visited $\xi \subseteq V$
- frontier $F=\{$ next to some visited node but not visited $\} \subseteq V \backslash X$

Alg:
search $G s$:

$$
\begin{aligned}
& X=\{ \} \\
& F=\{s\} \\
& \text { while }|F|>0: \\
& U=\text { some non-en } \\
& \text { visit everything in } U \\
& X=X U U \\
& F=N_{G}^{+}(X) \backslash X \\
& \text { return } X
\end{aligned}
$$

$$
U=\text { some non-empty subset of } F
$$

The search G s returns $R_{G}(s)$
Def graph search tree is a graph built by
for $v \in R_{G}(s)$:
create edge from v to the vertex that added it to v (or some vert if race condition)

\# Cost Analysis

$$
\begin{aligned}
& X=X \cup U \quad \leftarrow \text { union } \\
& F=N_{G}^{+}(X) \backslash X \leftarrow \text { finding nbors \& set diff }
\end{aligned}
$$

Claim cost is dominated by $N_{G}^{+}(X)$
(assume for now)

$$
\begin{aligned}
N_{G}^{+}(X) & =\bigcup_{v \in X} N_{G}^{+}(v) \\
& =\text { reduce union } \varnothing \quad\left\langle N_{G}^{+}(v): v \in X\right\rangle
\end{aligned}
$$

Recall Assume $a=|A| \leqslant b=|B|$

$$
\begin{aligned}
& W_{\text {ion }}(a, b)=O\left(a \lg \left(\frac{b}{a}+1\right)\right) \leqslant O(a+b) \\
& \text { Sion }(a, b)=O(\lg (a+b))
\end{aligned}
$$

Reduce union recursion tree
Level

size $\leqslant\left(d_{1}+d_{2}\right)+\left(d_{2}+d_{3}\right)$
w

$$
\begin{aligned}
& O\left(d_{1}+d_{2}\right) \\
& \left|N\left(v_{1}\right)\right|\left|N\left(v_{2}\right)\right| \\
& \vec{d}_{1} \quad \ddot{d}_{2} \\
& \text { |N(} \left.v_{n}\right) \mid \\
& d_{n}^{\prime \prime}
\end{aligned}
$$

But $\sum_{i=1}^{n} d_{i} \leqslant O(m)$ so total work $O(m \lg n)$

Span: at level $\leqslant O(\lg n)$
overall $O\left(\lg ^{2} n\right) \leqslant($ is tight bound $)$
\# Parallel BFS
When $U=F$
BES $G s=$ let
loop $(x, F, i)=$
if $|F|=0$ then (x, i)
else \triangle let

$$
\begin{aligned}
& X^{\prime}=X \cup F \\
& F^{\prime}=N_{G}^{+}(F) \backslash X^{\prime}
\end{aligned}
$$

in
for BFS this $\equiv N_{G}^{+}\left(x^{\prime}\right) \backslash x^{\prime}$ $\operatorname{loop}\left(X^{\prime}, F^{\prime}, i+1\right)$ end
in

$$
\begin{aligned}
& \operatorname{loop}(\},\{s\}, 0) \\
& \text { end }
\end{aligned}
$$

Claim : at Δ,

$$
\begin{aligned}
& X_{i}=\{v \in V, \delta(s, v)<i\} \\
& F_{i}=\{v \in V, \delta(s, v)=i\}
\end{aligned}
$$

Proof It feels right
$\because:=$ - when loop called with counter i

Proof by induction

$$
\begin{aligned}
B C \quad i=0, & X_{0}=\varnothing . \\
& F_{0}=\{s \xi .
\end{aligned}
$$

IS Assume for i, WTS for $i+1$

$$
\begin{aligned}
X_{i+1} & =X_{i} \cup F_{i} \\
& =\{v \in V, \delta(s, v) \leq i\} \\
& =\{v \in V, \delta(s, v)<i+1\} \\
F_{i+1} & =N_{G}^{+}\left(F_{i}\right) \backslash X_{i+1} \\
& =\{v \in V, \delta(s, v)=i+1\}
\end{aligned}
$$

BFS on line graph

\# iterations $O(n), O(\lg n)$ at each iter

$$
\begin{aligned}
& W=O(n \lg n) \\
& S=O(n \lg n)
\end{aligned}
$$

BFS cost
Let $\|F\|=\sum_{x \in F}\left(d^{+}(x)+1\right)$
assume tree set for liter i

$-X_{i} \cup F_{i}$	$O\left(\left\|F_{i}\right\| \lg n\right)$	$O(\lg n)$		
$-N_{G}^{+}\left(F_{i}\right)$	$O\left(\left\\|F_{i}\right\\| \lg n\right)$	$O\left(\lg ^{2} n\right)$		
	same analysis as above $-\mid X_{i+1}$	$O\left(\left\|F_{i}\right\| \lg n\right)$		

Lee 16 Graph Search Cont
\# Parallel BFS cost analysis cont.
BFS cost
Let $\|F\|=\sum_{x \in F}\left(d^{+}(x)+1\right)$
assume tree set
for liter i

$$
\begin{aligned}
& -X_{i} \cup F_{i} \\
& -N_{G}^{+}\left(F_{i}\right) \\
& -\backslash X_{i+1}
\end{aligned}
$$

$$
\begin{array}{lc}
W & S \\
O\left(\left\|F_{i}\right\| \lg n\right) & O(\lg n) \\
|F| \leqslant|X| \Rightarrow O\left(|F| \lg \left(\frac{|X|}{| | \mid}+1\right) \leqslant|F| \lg n\right. \\
|F|>|X| \Rightarrow O\left(|X| \lg \left(\frac{|F|}{|x|}+1\right) \leqslant|F| \lg |F| \leqslant|F| \lg n\right. \\
O\left(\left\|F_{i}\right\| \lg n\right) & O\left(\lg ^{2} n\right) \\
\begin{array}{l}
\text { same analysis } \\
\text { as above }
\end{array} & \\
O\left(\mid F_{i} \| \lg n\right) & O(\lg n)
\end{array}
$$

${ }^{c}$ similar to union
Over all loops. Say max depth in search is d

$$
\begin{array}{rlrl}
W & =O\left(\sum_{i=0}^{d}\left(\left\|F_{i}\right\| \lg n\right)\right) \\
& =O\left(\lg n \sum_{i=0}^{d}\left\|F_{i}\right\|\right) \\
& =O(\lg n \cdot(m+n)) \quad \text { using }\|F\| & =\sum_{x \in F} d^{+}(x)+1 \\
& =\sum_{x \in F} d+(x)+\sum_{x \in F} 1 \\
& & =m+n
\end{array}
$$

$S=O\left(d \lg ^{2} n\right) \quad$ * one $\lg n$ can be eliminated using some
\# DPS
When $U=$ most recently seen vert in frontier

Recursive imp
$D F S G \mathrm{~s}=$
let

$$
\operatorname{DFS}^{\prime}(X, v)=\begin{gathered}
\text { if } 1 v \in X \text { then } X \\
\\
\text { else iterate } D F S^{\prime}(X,\{v\}) \quad N^{+}(v)
\end{gathered}
$$

in
$D F S^{\prime}(\{\xi, s)$ - inherently sequential!
end

- in fact DFS believed to be P-complete
- and believed that P-complete probs don't have polylog span sol

Example

Possible order: s, b, d, f, g, c, e \rightarrow induced search tree:

DFS edge types

- Tree edge - $u \rightarrow v$ if v visited from u in DFS viz- reversed edges in search tree
- Back edge - edge that go back to ancestor in DFS tree that's not tree edge
- Forward edge - edge that go to descendent in DFS tree that's not tree edge
- Cross edge - none of above, they cross btwn branches

Note these four partition the edges in G

Generic DFS
Notice we may want to do some analysis while computing 1,2,3 We can let caller provide function for those computation

- application state Σ
- transition funcs $\Sigma \times V \rightarrow \Sigma$
- visit - called when first visiting a vert
- finished - called when done iterating over $\mathrm{N}^{+}(v)$
- revisit - if already visited

DHS $G((\Sigma, x), v)=$
if $v \in X$ then (revisit $(\Sigma, v), X)$
else let

$$
\begin{aligned}
& \Sigma^{\prime}=2 \frac{\operatorname{visit}(\Sigma, v)}{X v\{v\}} \\
& \left(\Sigma^{\prime \prime}, X^{\prime \prime}\right)=\text { iterate } \quad(D F S G) \quad\left(G^{\prime}, X^{\prime}\right) \quad N^{+}(v)
\end{aligned}
$$

in

$$
\begin{aligned}
& \text { an (finish } \left.\left(\Sigma^{\prime \prime}, v\right), X^{\prime \prime}\right) \\
& \text { end }
\end{aligned}
$$

Sometime we want
$\operatorname{DFSALL}(G=(V, E)) \quad \Sigma=$ iterate $(D F S G)(\Sigma,\{ \}) V$
Ex. application
\rightarrow DFS numbering: track visit / finch timestamp

Using our framework:

$$
\begin{aligned}
& \Sigma: \underset{\text { int time }}{\operatorname{int}} \times(v, \text { int }) \text { table } x(v, \text { int }) \text { table } \\
& \text { visit }((t, V, F), v) \\
& \quad=(t+1, \text { insert } V(v, t), F) \\
& \text { finish }((t, V, F), v) \\
& \quad=(t+1, V, \text { insert } F(v, t)) \\
& \text { reusit }(C t, V, F), v) \\
& \quad=(t, V, F)
\end{aligned}
$$

\rightarrow Determine edge types (reduced to start I finish time)
Keep set of tree edge in a set in Σ
Claims
$e=(u, v)$ forward edge $\Leftrightarrow \frac{\stackrel{v}{\longmapsto}}{u} \wedge e$ not tree edge
$e=(u, v)$ back edge $\Leftrightarrow \frac{v}{\longmapsto_{u}} \wedge e$ not tree edge
$e=(u, v)$ cross edge $\Leftrightarrow \stackrel{v}{v}$ viz. funshed searching target of $e=(u, v)$ cross edge $\Leftrightarrow \longmapsto v, v z$. e before going to the source
\rightarrow Cycle detection (reduced to edge type)
Claim G has cycle $\Leftrightarrow \exists$ back edge
(\Leftarrow) Trivial
(\Rightarrow) Fix first time encountering vert in some cycle, then at later point we visit an incoming edge to that vert

\rightarrow Topological sort
Given $D A G \quad G=(V, E)$
Observe it defuse partial order

$a \leqslant_{R} b \Leftrightarrow b$ reachable from $a \wedge a \neq b$
Want to sort V s.t. it respects $\leqslant R$
Lemma DAG finish time:
if $a \leqslant R b, \forall D F S, b$ finish finish before a CI b visited before $a \quad$ C2 a insited before b

$$
\underset{b}{ } \underset{a}{F}
$$

Alg run DFSAll, return reverse finch time order

Lee 17 Kosaraju's Alg shortest path
\# Strongly connected component (SCC)
Def A subset of versts $S \subseteq V$ is strongly connected (SC) if $\forall v e S, \forall u \in S$, u reachable from v
Def If $S \subseteq V$ is $S C$ and is maximal, it's a strongly connected component
Ex.

Claim Contracting the SSCS \leftarrow else one of those SSC not
Clam contracting the SSCS gets you a DAG maximal.
\rightarrow turn SACs into verts and add edge by reachboility btwn components

Def The SCC problem: fund the SACs in graph and return them in topological order

Lemma For directed graph G, if $u \in V$ is first-visited vert in its SCC, all versts v reachable from u funsh before u in a DFS
Cl vie in same $S C C \Rightarrow \stackrel{\leftarrow}{\stackrel{\sim}{\longleftrightarrow}}$
C2 v.u in diff $\operatorname{scc} \wedge u$ visited before $v \Rightarrow \stackrel{\sim}{u}$
C3 v.u in diff SCC $\wedge u$ visited after $v \Rightarrow \quad v_{v}$
... otherwise uv in sum e SCC so we can't go back
\# Kosaraju's Algorithm

$$
\begin{aligned}
& \operatorname{scc} G=(V, E)= \\
& \text { let } \\
& F=\text { reverse FinishTime } G \\
& G^{\top}=\text { transpose } G \text { (reverse the edges) } \\
& \text { visited verbs } G^{\sec \text { solar }} \\
& \text { accumsCCs }((X, L), u)= \\
& \text { Let }- \text { overall visited } \\
& \left(X^{\prime}, A\right)=\operatorname{reach} G^{\top} X u \\
& { }^{*} \text { newly visited }{ }^{\circledR} \text { search for all reachable from } X \\
& \Delta \text { If } A=\phi \Rightarrow \text { we sow new } S C C \\
& \text { in } \\
& \text { if } A=\varnothing \text { then }(X, L) \text { else } \\
& \text { (} \left.x^{\prime}, \quad L+\langle A\rangle\right)
\end{aligned}
$$

in
iterate accumscc $(\phi,\langle \rangle) F$ end

Cost $2 \times$ DFS, so actually linear time
Trace

$F \Rightarrow\left\langle\frac{b}{\text { latest fish }} \boldsymbol{e} a \operatorname{f} d \quad c i\right\rangle$

$$
G^{\top} \Rightarrow
$$

$$
\{\text { no more to add }
$$

Correctness

Observe:
When first reach each SCC U_{i} via vert u_{i} in rev finish order:

1. SCCs left of U_{i} already completely visited
2. reach $G^{\top} u_{i}$ will not visit any SACs to right of U_{i}
3. reach $G^{\top} u_{i}$ will visit all verts in U_{i}
where left / right identifled by first appearance of vert in SCC in F

Notice $1-3 \Rightarrow$ reach $G^{\top} u_{i}$ visit exactly U_{i}
If Δ is current, all of \longleftarrow unreachable from Δ in G otherwise F is not rev finish time order
$\Rightarrow \Delta$ unreachable from any of \longleftarrow in G^{\top}
\# shortest path problem
Def weighted graph has some weight for each edge

$$
G=(V, E, \omega) \quad \omega: E \Rightarrow \mathbb{R}
$$

one representation $G:(V,(V, \mathbb{R})$ table $)$ table $\delta(u, v):=$ shortest path with min edge weights from u to v

$$
\begin{aligned}
& \text { reach } G^{\top} \varnothing b \quad \Rightarrow\{b, e, g\} \quad\langle\{b, e, g\}\rangle \\
& \text { reach } G^{\top}\{b, e, g\} \quad \Rightarrow \varnothing \varnothing \\
& \text { reach } G^{\top}\{b, e, g\} \quad \Rightarrow \quad \varnothing \\
& \text { reach } G^{\top}\{b, e, g\} \quad a \quad \Rightarrow\{a, d, h\} \quad\langle\{b, e, g \xi,\{a, d, h\}\rangle \\
& \{b, e, g \cdot a, d, h\} \quad h \Rightarrow \phi \\
& f \Rightarrow\{f\} \quad\langle\{b, e, g\},\{a, d, h\},\{f\}\rangle \\
& \cdots \quad\{b, e, g, a, d, h, f\} d \Rightarrow \phi \\
& c \Rightarrow\{c, i\} \quad\langle\{b, e, g\},\{a, d, h\},\{f\},\{c, i\}\rangle
\end{aligned}
$$

Def Single-pair shortest path problem (SPSP) Given u, v, fund $\delta(u, v)$

Def Single-source
(ASP)
Given u, find $\delta(u, v) \forall v$ reachable from u
Def All-pairs
$\forall u, \forall v$, fund $\delta(u, v)$
\# Priority-furst search (PFS) aka best-first search
Decide where to search by order returned by some priority func viz. pick $U s F$ by highest priority Ex. beam search, A^{*}, dijkstra

Dijkstra's property:
If \# neg edge weights in G, let $p(v)=\min _{u \in X}(\delta(s, u)+w(u, v))$
then $v \in V \backslash X$ with smallest $p(v)$ has $\delta(s, v)=p(v)$
Dijkstra's algorithm:
use the above P_{0} as priority in PFS (record $p(v)$ for each vert v
when we visit v)

Ex.

s	a	b	c	d
0	∞	∞	∞	∞
	10	∞	5	∞
	8	14		7
	8	11		
		9		

$$
\begin{array}{rl}
\delta(s, s) & =0 \\
s & c
\end{array}=50
$$

Lee 18 More Dijkstra \& Bellman -Ford
\# Priority First Search
search $G s=$

$$
X=\{\xi \quad F=\{s\}
$$

init
while $|F|>0$:

$$
\begin{aligned}
& v=\min _{v \in F} \rho(x) \\
& \text { visit } \\
& X=X \cup\{v\} \\
& F=N_{G}(x) \backslash X \equiv(F \backslash\{v\}) \cup\left(N_{G}^{+}(v) \backslash X\right) \\
& \text { return } X
\end{aligned}
$$

\# Dijkstra property
If no negative weight edges and define priority

$$
\begin{aligned}
& P(v)=\min _{v \in X}(\delta(s, v)+w(v, r)) \\
& Y=\operatorname{argmin}_{v \in V \backslash x} p(v)
\end{aligned}
$$

then $p(Y)=\delta(s, Y)$

Dijkstra's init:

$$
\begin{aligned}
& d(s):=0 \quad d(x):=\infty \text { for } x \in V \backslash\{s\} \\
& p(v)=\min _{x \in x}(d(x)+w(x, v)) \\
& \text { visit } d(v)=P(v)
\end{aligned}
$$

Ensures: $d(v)=\delta(s, v)$

Imp l
dijkstra $P Q G S=$ Wite an augmented frontier Let loop $\times Q=$ with extra verts, or even case delmin Q of dist to source by diff paths (NONE, ,) $\Rightarrow X$

$$
\mid\left(\text { SOME }(d, v), Q^{\prime}\right) \Rightarrow
$$

if $(v,-) \in X$ then loop $X Q^{\prime}$ else let
priority queue \mathbb{Q} insert $\mathbb{Q} \times(\mathbb{Z} \times N) \rightarrow \mathbb{Q}$ delmin $\mathbb{Q} \rightarrow(\mathbb{Z}, N)$ option

$$
\begin{aligned}
& X^{\prime}=X \cup\{(v, d)\} \\
& \text { relax }(Q,(u, w))=\operatorname{insert}(Q,(d+w, u)) \\
& Q^{\prime \prime}=\underbrace{}_{\text {iterate relax } Q^{\prime}\left(N_{G}^{+}(v)\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { loop } X^{\prime} Q^{\prime \prime} \\
& \text { end }
\end{aligned}
$$

in
loop $\}$ (insert empty Q $(0, s)$) end
\# Dijkstra cost analysis
Observe parallehsm maybe possible in _ for equal weight batches and with batch insertion enabled queue, but in general sequential.
every edge could cause insert

Operation	Number	Work	With fancy pquene,		
Q.delmin	m				
Q.insert	m			\quad	$\operatorname{lgn}(=\lg m)$
:---:					
T. find	$\quad O(m+n \lg n)$ possible				

\# Belleman - Ford - min dist on arbitrary graphs, but less efficient
Ex. - convert from other probs lead to graph with neg edge

- fund best way to convent currency
when we bout max product, take neg \log and fund min path, so we could get negatives
Intuition: $\delta^{k}(s, v)=$ shortest path $s \rightarrow v$ with max of k edges given $\delta^{i}(s, v)$ for all v get $\delta^{i+1}(s, v)$ by trying all next edge \leftarrow porrollel!
 $\delta^{2}(s, \cdot)$
get global: fund δ^{n-1} *
* if not done at $i \geqslant n$ then we got neg cycle

$B F G=(V, E) s=$
let $\operatorname{loop}(D:(v, R)$ table) $k=$ just to prevent $D[s] \rightarrow \infty$ let $D^{\prime}=\left\{V \mapsto \min \left(D[v], \min _{u \in N_{G}^{-}(v)} D[v]+w(u, v)\right): v \in V \xi\right.$ if $(k=|v|)$ then NONE \leftarrow neg weight cycle else if $D=D^{\prime}$ then SOME D
in else loop $D^{\prime}(k+1)$

$$
\begin{aligned}
& \text { loop }\{S \mapsto O\} \cup\{v \mapsto \infty \mid v \in V \backslash\{s\}\} \\
& \text { end } O \\
& W(n, m)=O(m n) \quad S(n, m)=O(n \lg m)=O(n \lg n)
\end{aligned}
$$

Lee 19 Johnson's Algorithm \& Graph Contraction
So far:

	Work	Span	Parallelism
Dijkstra	$O(m \lg n)$	$O(m \lg n)$	None
Bellmond-Ford	$O(m n)$	$O(n \lg n)$	$O\left(\frac{n}{\lg n}\right)$

Those are single source shortest path (SSSP) problems Asymptotically no better way to find SP given source and target than SSSP What if we want all pairs shortest path (APSP)?

Brute force with Dijkstra?
\# Johnson's Alg
Changing edge weight
Naive: add weight to each edge :C Bad

Potential property:

$5 \geqslant \phi(c) \geqslant 3$

General case - reweight all edges by potential

$$
w\left(u^{\prime}, v^{\prime}\right)=w(u, v)+\phi(u)-\phi(v)
$$

Claim

$$
\begin{aligned}
\delta\left(u^{\prime}, v^{\prime}\right) & =\delta(u, v)+\phi(u)-\phi(v) \\
(\Leftrightarrow \delta(u, v) & =\delta\left(u^{\prime}, v^{\prime}\right)-\phi(u)+\phi(v)
\end{aligned}
$$

Shortest path relax property
(a, b) relaxed if

$$
\begin{aligned}
& \delta(s, a)+\omega(a, b) \geqslant \delta(s, b) \\
\Leftrightarrow & w(a, b) \geqslant \delta(s, b)-\delta(s, a)
\end{aligned}
$$

$$
\Leftrightarrow w(a, b)+\delta(s, a)-\delta(s, b) \geqslant 0 \quad \leftarrow \text { looks like potential }
$$

Dummy Vertex

Reduction

1. Pick potentials so that all weights $\geqslant 0$ i. Add dummy verts s \& edges of 0 weight
ii. Rum Bellmond-Fard to get $\delta(s,$.
iii. $w\left(u^{\prime}, v^{\prime}\right)=w(u, v)+\delta(s, u)-\delta(s, v)$
2. Dijkstra from all source
3. Recover path lengths with Δ

Cost

	Bellmond-Ford	Dijkstra
Work	$O(m n)$	$n O(m \lg n)$
$S_{\text {pan }}$	$O(n \lg n)$	$O(m \lg n)$

\# Graph contraction - gives you polylog span
\rightarrow Generally search-based alps not good for parallelism. Think lice graph causing troubles...

Useful for:

- Graph connectivity
- Min spanning tree

Edge contraction

$$
\mapsto \int_{0}^{c} \text { bade } \quad \vdash \rightarrow \quad \text { - abode }
$$

Contract by constant factor: fund maximal matching and coulract
 greedy works, but is sequential :C

Parallel mostly maximal matching
Random priority. pick max among touching edges

Lee 20 Star Contraction \& Connectivity
\# Graph contraction
parallelism, pdylog span, root dominated work contract to get constant fraction smaller

Defs Graph partition := subgraph $H=\left(V^{\prime}, E^{\prime}\right)$ with $V^{\prime} \leqslant V$ and $E^{\prime}=$ $\left\{\{u, v\} \in E \mid u, v \in v^{\prime}\right\}$ viz. cut out verts and keep reasonable edges

Given partitions $H_{1}, \ldots, H_{k-1},\{u, v\} \in E$ is

- internal edge if $u, v \in V_{i}$
- cut edge if $u \in V_{i}, v \in V_{j}, i \neq j$

Quotient graph is contracted, smaller graph
Supervert is vert in quotient that verts in orig graph "merged" to
Reps 1. Label for each part
2. Map from vert to their part label

General Contraction
BC Small graph \Rightarrow compute result
IC Contract Make quotient

- Partition
- Turn part into vert

- Drop internal edges
- Point cut edges elsewhere (maybe remove dups)

Recur Solve on contracted graph
Expand Get result for bigger graph
\# Edge contraction
When each part is a vert or are edge.
First we need to fund matching
\rightarrow Greedy: for $e \in E$, keep adding e to M if possible sequential, always within \rightarrow Random: parallel assignment, local decisions

Coin flip
Flip com for each edge, contract head st. no neighbouring edge is head

This gives constant fraction on some graph but not others
\rightarrow Cycle graph each edge $\frac{1}{8}$ prob contracted, so \mathbb{E} contract $\frac{m}{8}$
\rightarrow Star graph $I P$ then we only contract max 1 edge.
\# Star Contraction
Each part looks like a star with center \& satellites
\rightarrow Sequential: pick center, add all nbors as satellites, remove, repeat
\rightarrow Random: flip com on each vert, turn H^{-}into centers, for each T try to contract into neighbouring H, then turn T
 that failed to merge into center
starPart $(G=(U, E))=$
let

$$
T H=\{(u, v) \in E \mid u \text { tail } \wedge v \text { head }\}
$$

$P_{s}=\bigcup_{(u, v) \in T H}\{u \mapsto v\} \leftarrow$ point sars to centers
$V_{c}=V \backslash \operatorname{domam}\left(P_{s}\right) \quad \leftarrow$ center verts
in $P_{c}=\left\{u \mapsto u: u \in V_{c} \xi<\right.$ center contract to center $\left(V_{c}, P_{s} \cup P_{c}\right)$
end
Cost

$$
\left.\begin{array}{l}
w=O(n+m) \\
S=O(\lg n)
\end{array}\right]
$$

with array seq

Fact for G with n non-isolated verts, \mathbb{E} satellites $\geqslant \frac{n}{4}$

Contraction alg
starContract base expand $(G=(V, E))=$ if $|E|=0$ then base V else let
$\left(V^{\prime}, P\right)=$ starPart $(V, E) \quad$ s remove calf edge
$E^{\prime}=\{(P[u], P[v]):(u, v) \in E \mid P[u] \neq P[v]\}$
$R=$ starContract base expand $\left(V^{\prime}, E^{\prime}\right)$
in
expand (V, E, V, P, R)
end
Cost (star contract until $|E|=0$)
Assume: $\quad W_{\text {base }}=O(|V|) \quad S_{\text {base }}=O(1)$

$$
\begin{aligned}
& W \text { expand }=O(|V|+|E|) \quad \text { Sexpend }=O(\lg (|V|+|E|) \\
& W=O((m+n) \lg n) \quad S=O\left(\lg ^{2} n\right)
\end{aligned}
$$

\# Application : Graph Connectivity
Prob Given undirected G, fund all $C C$ s by specifying them as vert set
\rightarrow Could do BFS or DFS, but slow
Contraction alg
connected Components $(G=(V, E))=$
if $|E|=0$ then $(V,\{v \mapsto v: v \in V\})$
else let
$\left(V^{\prime}, P\right)=\operatorname{starPart}(V, E)$
$E^{\prime}=\{(P[u], P[v]):(u, v) \in E \mid P[u] \neq P[v]\}$
$\left(V^{\prime \prime}, C\right)=$ connectedComponents $\left(V^{\prime}, E^{\prime}\right)$
in

$$
\left(v^{\prime \prime},\{u \mapsto C[v]:(u \leftrightarrow v) \in P\}\right)
$$

end

Lee 21 Min Spanning Tree
\# MST
Def Given undirected, connected graph $G=(V, E)$, a spanning tree is tree $G^{\prime}=\left(V, E^{\prime}\right)$ with $E^{\prime} \subseteq E$

A min spanning tree (MST) for undirected connected weighted graph $G=(V, E, w)$ is $S T=\left(V, E^{\prime}\right)$ of G with min weight sum for E.'

Apps - Connecting things with min cost

- Approinmate TSP

Prop Given tree:
add edge creates exactly one cycle
then removing any edge in this cycle creates tree again

Prop Light edge property
\forall undirected, comm, weighted G with $|V| \geq 2$,
$\forall u \subseteq V,|u| \geqslant 1$,
the min edge e from U to VIU is in MST
Proof $C l$ If e is only edge btwn U and $v \backslash U$ then duh
C2 Else AFSOC e \&MST, then $\exists e^{\prime} \in M S T$ that goes btwn U and $V \backslash U, e^{\prime} \neq e$, and e^{\prime} forms cycles with e if e added to MST

Add e to the MST and remove e^{\prime}. We still get spanning tree but costs less. ※
Prop Heavy edge prop
the heavest edge in any cycle is not in the MST
\# MST Algs
All $O(m \lg n)$ work, span maybe different

Kruskal
sort edges by weight
for i in $0 . . n-1$: check using ion fund
if $(u, v)=E[i]$ not self edge. contract (u, v), add (u, v) to MST

Prim \longleftarrow same cost analysis as Dijkstra
PFS with $p(v)=\min _{x \in X} w(x, v)$
Sleator-Tanjan $\leftarrow \exists \lg n$ method to fund heavy edge in cycle for $e=(u, v) \in E$: add e to MST if new cycle formed: remove heavest from that cycle

Boriukka (1926 is), parallel
boruvka $(G=(V, E, w))=$ if $|E|$ then ϕ else for every vert fund min weight e add e to MST $G^{\prime}=$ contract all edges identified m recur on G^{\prime} end

Cost:
Every step reduce by at least $\frac{1}{2}$ so worse case $\lg n$ steps
per $\left[\begin{array}{lll}\text { Find mim } & w & S \\ \text { Contract } & m & \lg ^{n} n \\ \text { Total } & m & \lg ^{2} n \\ & m \lg n & \frac{\lg ^{3} n}{}\end{array}\right)$
$\lg ^{2} n$ possible using star contraction

Lee 22 Dynamic Programining (DP)
Idea: solving subinstances and saving results in useful way
\# General structure
0. Start with some decision I optimisation I counting one of these

1. Develop recursive solution
2. Recognise how to reuse results from subinstances
3. Count nun of unique subinstances for analysis
4. Implement

- Memorisation
- Bottom-up
\# Fibonacci example
$f i b(n)=$ if $(n \leq 1)$ then 1 else fib $(n-2)+f i b(n-1)$
Call tree fibs 5

Result dependency

So we need $6=n+1$ unique instances
work $O(n)$
span $O(n)$

Bottiom-up Imp l
fib $n=$
let
loop $a b k=$
if $k=n$ then a
else loop $b(a+b)(k+1)$
in
loop 110
\# Subset sum problem (SS) NP -hard
Given set $S \subseteq \mathbb{Z}^{+}$and $k \in \mathbb{Z}^{+}$, is there $X \leq S, \quad \sum_{x \in X} x=k$?
\rightarrow Actually the base for some crypto system that was broken
Even though NP -hard it's easy to find sol for some input.
Pseudopoly - polynomial to k, so if k itself poly to $I S i$ we get poly to $|s|$

Recursive sol

$$
\begin{aligned}
& S S(S, k)^{\prime}=\text { case }(S, k) \text { of } \\
& (-, 0) \Rightarrow \text { true } \\
& I([],-) \Rightarrow \text { false } \\
& \mid(x:: x s, k) \Rightarrow \text { if } k<x \text { then } S S(x s, k) \text { else } \\
& \qquad S S(x s, k-x) \text { orelse } S S(x s, k)
\end{aligned}
$$

$W(n)=2 W(n-1)+O(1)$ exponential:
Ex. $\quad S=[1,1,1] \quad k=3$

[],0[],1[],1[],2[],1[],2[],2[],3

$$
k^{\prime} \in\{0, \ldots, k\}, \quad\left|S^{\prime}\right| \in\{0, \ldots,|S|\}
$$

so nim unique subinstances is $(|s|+1)(k+1)$

If reuse results, work $O(|s| k)$
span $O(|s|+1)$
\# Representing lookup table
Our table wants to have subinstances as key, but if input has hist how to hash I compare list? Expensive!
In practice try convert subiustance to integer

$$
s s(s, k)=
$$

let
$n=|S|$ use this as key to table, or even 2D array
$S^{\prime}\left(i, k^{\prime}\right)=$ (case $\left(i, k^{\prime}\right)$ of
$(-, 0) \Rightarrow$ true
$1(n,-) \Rightarrow$ false $\quad \Delta$ should look up here
$1\left(i, k^{\prime}\right) \Rightarrow$ if $(k<s[i])$ then $s s^{\prime}(i+1, k)$ eke $S S^{\prime}\left(i+1, k^{\prime}-S[i]\right)$ orelse $s S^{\prime}\left(i+1, k^{\prime}\right)$
in
ss' $(0, k)$
end
\# Counting problem example
Count number of rooted binary tree shape with size n $n \quad$ shapes
0ϕ

2

3

$$
T(n)= \begin{cases}1 & \text { if } n<1 \\ \sum_{i=0}^{n-1} T(i) T(n-i-1) & \text { else }\end{cases}
$$

left cubtree size left subsree right cubtree

Nom unique subiustances $=n+1$
Work per subustance $-O(n)$ to do the sum span - $O(\lg n)$ reduce op+
Overall work $\sum_{i=0}^{n} O(i) \in O\left(n^{2}\right)$

$$
\sum_{i=0}^{n} O(\lg i) \in O(n \lg n)
$$

Lee 23 More DP
\# Min Edit Dist Problem
Minimise the numbers of insertions and deletions to go from $S: s t r$ to T :str
Ex. ABCADA \rightarrow ABADC in 3 edits
Ala:

$$
\operatorname{MED}(S, T)=
$$

let

$$
\begin{aligned}
& \operatorname{MED^{\prime }(i,j)}=\text { case }(i, j) \text { of } \\
& (0, j) \Rightarrow j \\
& \mid(i, 0) \Rightarrow i \\
& \left\lvert\,(i, j) \Rightarrow \begin{cases}\operatorname{MED}(i-1, j-1) & \text { if } \quad S[i-1]=S[j-1] \\
\min \left\{\begin{array}{ll}
M E D^{\prime}(i-1, j)+1 \\
M E D^{\prime}(i, j-1) & +1
\end{array}\right\} \text { else }\end{cases} \right.
\end{aligned}
$$

in
$M E D^{\prime}(|S|,|T|) \Delta$ Exponential, but allows subinstance result end reuse here

Andysis
$(|S|+1)(|T|+1)$ unique subiustances
each subinstance hos constant local work so $O(|S||T|)$ work, $O(|S|+|T|)$ span

Bottom up impl

		0	1	2	3	4	5	6
		-	A	B	C	A	D	A
0	-	0	1	2	3	4	5	6
1	A	1	0	1	2	3	4	5
2	B	2	1	0	1	2	3	4
3	A	3	2	1	2	1	2	3
4	D	4	3	2	3	2	1	2
5	C	5	4	3	2	3	2	3
6	A	6	5	2	3	2	3	2

Memvisation imp
fun $f(i, j)=$ case (i, j) of

$$
\begin{array}{ll}
(0, j) \Rightarrow j & \\
((i, 0) \Rightarrow i & \text { if } s[i-1]=s[j-1] \\
1(i, j) \Rightarrow \begin{cases}g(i-1, j-1) & \\
\min \left\{\begin{array}{l}
g(i-1, j)+1 \\
g(i, j-1)+1
\end{array}\right\} & \text { else }\end{cases}
\end{array}
$$

val $M E D^{\prime}=$ memoiser. Memorise (f)
\# Memorisation lib
fun memorise $f=$
Let
val cache $=$ ref (Table.empty ())
fun $g a=$ (case find (!.cache, a) of SOME $r \Rightarrow r$
INONU \Rightarrow let
val $r=f g a$
val _ = cache := insert (! cache, a, r)
in r end
in
N Not thread safe ©
end

$$
\begin{aligned}
& g: \alpha \rightarrow \beta \\
& f:(\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \beta \\
& \text { memorise: }((\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \beta)
\end{aligned}
$$

Ex. memorised fibs
fun f g $n=$ if $n \leq 1$ then 1 else

$$
g(n-1)+g(n-2)
$$

val $\mathrm{fi}^{\prime}=$ memoriser. memorise f

Lee 24 Meldable Priority Queues
\# Meld operation
meld: $Q \times Q \rightarrow Q$ that unions two priority queues
Possible imp:

- balanced tree	insert	$\lg n$	$\operatorname{lom} n$	from seq	meld

operations based on meld
datatype $P Q=$ Empty $1 \operatorname{Node}(k \times P Q \times P Q)$
singleton $x=\operatorname{Node}(x$, Empty, Empty)
insert $(Q, x)=\operatorname{meld}(Q$. singleton $x)$
del $\operatorname{Min} Q=$ case Q of
Empty $\Rightarrow(Q$, None)
$1 \operatorname{Node}(k, L, R) \Rightarrow(\operatorname{meld}(L, R)$, Some $k)$
fromseq $S=$ reduce meld Empty 〈singleton $x: x \in S$ 〉
cost analysis assuming meld is $O(\mathrm{Ig}(m+n))$
insert
delimit
from seq

$$
\begin{aligned}
\lg (n+1) & =\lg n \\
W(n) & =2 w\left(\frac{n}{2}\right)+O(\lg n) \\
& \in O(2 \lg n)=O(n) \\
S(n) & =S\left(\frac{n}{2}\right)+O(\lg n) \\
& \in O\left(\lg ^{2} n\right)
\end{aligned}
$$

Bad meld (wrrect but out of bound)
meld $(A, B)=$ case (A, B) of
(,- Empty) $\Rightarrow A$
1 (Empty, -) $\Rightarrow B$
$1\left(\operatorname{Node}\left(k_{A}, L_{A}, R_{A}\right), \operatorname{Node}\left(k_{B}, L_{B}, R_{B}\right)\right) \Rightarrow$
if $k_{A}<k_{B}$ then
$\operatorname{Node}\left(k_{A}, L_{A}, \operatorname{meld}\left(R_{A}, B\right)\right)$
else
$\operatorname{Node}\left(K_{B}, L_{B}, \operatorname{meld}\left(R_{B}, A\right)\right)$

Cost analysis
Oberve we only recurse down right subtrees (right spine) So if right spine is short, we're efficient
meld

Fact Cost meld $\in O$ (|right spine of $A 1$)
\# Leftist queue
Def rank $Q:=$ \# nodes in right spine
Def leftist property:

$$
\forall \text { Node }, L, R) \in P Q, \operatorname{rank} R \leq \operatorname{rank} L
$$

Imp
datatype $P Q=$ Empty \mid Node (int $\times k \times P Q \times P Q$)

$$
\text { rank } Q Q=\text { case } Q \text { of }
$$

Empty $\Rightarrow 0$
I Node (r, , , , , $) \Rightarrow r$
node' $(k, A, B)=$ if rank $B<\operatorname{rank} A$ then
$\uparrow \quad \operatorname{Node}(\operatorname{rank} B+1, k, A, B)$
maintains leftist else
property

$$
\operatorname{Node}(\operatorname{rank} A+1, k, B, A)
$$

Proof
Let $m(r)$ be \min size of any leftist heap of rank r.
Claim: $m(r)=2^{r}-1$.
BC $r=0 \Rightarrow m(0)=0=2^{0}-1 \quad \sim$
\checkmark root left, smallest case $s \mathrm{~min}$ of right
IC $m(r)=1+m(r-1)+m(r-1)$

$$
\begin{aligned}
& =1+2\left(2^{r-1}-1\right) \\
& =2^{r}-1
\end{aligned}
$$

So size is exponential
to rank
Coro $\operatorname{rank} Q \leq \lg (|Q|+1)$
proof is that $|Q| \geqslant 2^{\text {rank } Q}-1$

$$
\begin{aligned}
|Q|+1 & \geqslant 2 \operatorname{rank} Q \\
\lg (|Q|+1) & \geqslant \operatorname{rank} Q
\end{aligned}
$$

Lee 25 Concurrent Data Structure \& Work Stealing Scheduling

Key ideas

- Lock-free data structure
- Linearisation
- Compare and swap (CAS)
- Concurrent deque
- Randomised stealing

Recall greedy scheduling $T=\frac{W}{P}+S$
But in real world we need to fund work to schedule
\# Working with async, parallel processors
Model
\square memorycores
can delay
can get unscheduled
Assume arbitrary interleaving can have different clock rate

PI $\quad r_{1} \leftarrow \operatorname{mem}[a]$
P2 $\quad r_{2} \leftarrow \operatorname{mem}[a]$
$r_{1}=r_{1}+1$
$r_{2}=r_{2}+1$
$\operatorname{mem}[a] \leftarrow r_{1}$ mem $\left.[a] \leftarrow r_{2}\right]+1$ or +2
\# Lock-free data structure
Def Lock free data structure

- Supports certain operations
- Shared across processes
- At least one process making process (puts "lock-free lock" ie. sone laura around critical code)
\# Linearisability
Operations: load, increment
push, pop
\rightarrow They can appear interteaved but correctness captured sequentially
\# Compare and swap
On $\times 86$: $\quad \mathrm{CMPXCHG}$
Analogous to:
CAS : α ref $\rightarrow(\alpha \times \alpha) \rightarrow$ bol
CASe r (old, new) $=$
let

$$
a=!r
$$

in
if $a=$ old then ($r:=$ new ; true) else false end

Limearisable increment \leftarrow no lock involved

```
Inc \((r\) : int ref \()=\)
    let
        \(a=!r\)
    in
        if LAS \(r(a, a+1)\) then ()
        else Inc \(r\)
    end
```

\# Work stealing scheduler (randomised)
How to do fol?
\rightarrow Forking puts job into shared data structure Idle threads find the job and do it

Each processor keeps a deque $D Q$ lock-free, linearisable

- when encountering flld on processor P

$$
D Q_{p} \text { pushbot }(g)
$$

run f
wait for result of g

- If processor p done or while waiting
case $D Q_{p}$.popbot (1) of
Some $f \Rightarrow \mathrm{rum} f$
None \Rightarrow repeat (randomly steal from top of another processor's $D Q$)
Analysis - why this works well

1. Most of the tune stealing own work since we prioritise push and pop from bottom \Rightarrow geod locality
2. Minimise sequentialisation of deque operations, Low contention since most of the time $D Q_{s}$ are long so, happens and we don't sequentiachise also randomness helps spread ont contentions
Thu number of steals to attempt is in $O(P S)$ time is in $O\left(\frac{w}{P}+S\right)$

$$
\begin{aligned}
& P=\text { mum processors } \\
& S=\sin \pi
\end{aligned}
$$

$$
S=\text { span }
$$

Lee 26 Memorisation with parallelism

Things that can show up in 15.418, 15-312, 15-410
\# Sequential imp
fun memorise $f=$
let
val cache $=$ ref Table.empty
fun $g a=$ case Table.find ! cache a of
SOME $r \Rightarrow r$
INONU \Rightarrow let
val $r=f g a \quad] \leftarrow$ multithreads can call f if they have

in
end
Prob we often do $\geqslant 2$ recursive calls and want to do them in parallel, but this impl not safe for parallelism

Idea suspend execution, make sure to not race compute

- at Δ, insert busy marker, at \square, update actual result so hookup result can be busy, some, none.
- at $>$, handle busy case by
- busy wait
- sleep wait (OS could schedule some other work?)
- suspend job (SML built-im, but not Python ($C H$, etc.) give continuation I handle to another thread
SML: caller to suspend T put self in some could just be set throw to walk e up
try wake things up at \triangle
Impl intialuse empty queue Q
states for table entry state = wait of $Q 1$ full of β
fum $g a$. case Table.fund ! cache a of
NONE \Rightarrow insert (a, wait (empty queue)) to table;

$$
r=f g a
$$

get queue Q;
insert (a, full r);
wake up everything in $Q] \leftarrow O(1)$ span with some impl
I SOME (wait Q) \Rightarrow suspend self in Q that supports parallel map
I SOME (full r) $\Rightarrow r$
Also, make sure table and queue are linearisable concurrent data struct needed.
\# Concurrent table
insert: ctable $\rightarrow(\alpha \times \beta) \rightarrow \beta$ option

$$
T \quad(a, b)
$$

if a not in T, add (a, b) and return NONE
if $\left(a, b^{\prime}\right)$ in T, return SOME $b^{\prime} \leftarrow$ can retry with update
update: ctable $\rightarrow(\alpha, \beta) \rightarrow()$
let
cache $=$ Table. empty
fun let $g a=$
$Q=$ Queve.empty
in
case (CTable.insert cache (a, wait Q)) of SOME (full r) $\Rightarrow r$
I SOME (wait Q) \Rightarrow
suspend self onto Q;
when wake up. fund result and return
I NONE \Rightarrow ((as before)

