Lee 1
Instructors: Guy Blelloch + Charlie Garrod
Today: Motivation for course content
Platform: Diderot
Lab credit caps at 80%
3 exams
\# Deconstructing course title
Parallel

- Parallel

D Sequential - special case of parallel by having $n=1$
Net using multiple cores \rightarrow wasting your time Many algoritinus inherently parallel \rightarrow use more cores

Dependency graph

\leftarrow Recall work and span al computation longest path

Data structure \& Algorithm

- Math Calculus, series, probability, linear algebra, proofs
- Abstraction Algorithm, interfaces, graphs, asymptotic analysis
- Python Toolbox \rightarrow connections \rightarrow problem, search for solution Problem solving reooguse similarity btw problems intuition
\# Example problem solving
Problem: human genome sequencing (2001, 3.1 billions of uncleotide)
string of $\{A, C, G, T\}, 3.1$ billion in length
Constrains
- Can't read more than 2000 base pairs
- Sequential read takes loos of years
\rightarrow Technique - Shotgun Method
$\left.\begin{array}{l}\text { make multiple copies } \\ \text { shatter into fragments }\end{array}\right\}$ Done in lab read each fragment \quad - 1000 long reconstruct whole sequence 3 done-m computer c try find overlaps and combine

The algorithon
Get set of all sequences read
Get rid of sequences that are subset of another Find best reconstruction
© Heuristic: find shortest superstring
Reduced problem : Shortest Substring (SS) Problem
L Also good to check if sth is NP hand LNP hard!
Informally: given set of strings, fund shortest suparsting that includes all

Problem solving
\rightarrow First try brute force solution, as long as correct try all permutations, merge overlaps, pick shortest Correct, but $O(n!)$
\rightarrow SS NP hard but has polynomial tine approximation and not all possible input instances are hard
Connection: Travelling Salesman Problem L given graph and distances in edges, visit all nodes with lowest distance)
Reduction: String \rightarrow vertex
$\omega\left(S_{1}, S_{2}\right) \rightarrow$ - overlap $\left(S_{1}, S_{2}\right)$
add special vertex Λ, make $\omega\left(s_{1}, \Lambda\right)=\omega\left(\Lambda, s_{1}\right)=0$ for all s_{1}, to fix cycles

