Lec 3 Brick method balanced case & substitution method
Brick method - more on left dominated case
The Suppose case (v)
$$\leq \alpha$$
 cast (children (v)) for all nodes v
with import size greater than some k_0 , $0 \leq \alpha \leq 1$.
Then the overall cast (children (v))
EX. $W(n) = 3W(\frac{n}{2}) + n$
 $W(n) = 3W(\frac{n}{2}) + n$
 $W(n) = \frac{3W(\frac{n}{2}) + n}{2}$
 $W(n) = \frac{1}{2}$
 $W(n) = \frac{n}{2}$
 $W(n) = \frac{1}{2}$
 $W(n) = \frac{1}{2}$
 $W(n) = \frac{1}{2}$
 $W(n) = a W(\frac{n}{2}) + \cdots$
 $W(n) = a W(\frac{n}{2}) + \cdots$
 $W(n) = a W(\frac{n}{2}) + \cdots$
 $W_{logen} = \log_{10} n$
 $\frac{n}{2}$
 $\frac{n}{2}$
 $\frac{n}{2}$
 $W(n) = a W(\frac{n}{2}) + \cdots$
 $W_{logen} = \log_{10} n$
 $\frac{n}{2}$
 \frac{n}

Ex. $W(n) = W(\frac{n}{2}) + W(\frac{n}{3}) + \sqrt{n} \dots$

$$\frac{n}{3} + \frac{n}{2}$$

$$\frac{n}{3} + \frac{n}{2}$$

$$\frac{n}{3} + \frac{n}{2}$$

$$\frac{n}{3} + \frac{n}{2}$$

$$\frac{n}{3} + \frac{n}{2} + \frac{n}{3} = \frac{n}{3} + \frac{n}{3} + \frac{n}{3} = \frac{n}{3} + \frac{n}$$

Brick method - balanced thee

 $\begin{array}{cccc} \mbox{F} & \mbox{work} & \mbox{balanced}, & \mbox{across} & \mbox{levels}, & & \mbox{asymptotically the same as imprecise definition} \\ & \mbox{overall} & \mbox{cost} & \leq & \mbox{max} & (\mbox{cost}(L_i)) & \mbox{$$\#$ levels} \\ \hline \mbox{Ex.} & \mbox{Merge sort} & & \mbox{highest cost} & \mbox{level} \\ \hline \mbox{W}(n) &= & 2W(\frac{n}{2}) + O(n) \\ & & & & & \\ \hline \mbox{$$\frac{n}{2}$} & & \\ \hline \mbox{$$

Note: not all recurrences fall in one of brick auses

Processor (P) PC Reg dessible and enze DC1) instructions . read, write, add, multiply, jimps, conditionals ... Sequential complexity in 122: #instructions on RAM model Inporfection: read write may ut be O(1) ... (think cache)

- IO model : non-constant read / write cost

- RAM model but multiple processors

P-RAM model : that but all processors run synchronously
P-RAM (W) : variant to allow write at some time
P-RAM (exclusive W) : -- disalow --Problems: how do we model and partition?
maybe possible, but messy to work with also synchronisoction is costly to implement
but agynchronous makes it even harder to program

- On top of async PRAM - Nested Parallel Work-Span Model More like a language wat model than marchine model

expressions			Work	Span
e ::=	x	(var)	1	1
l	C	(constant)	1	I
L	e. + e2		W(e,) + W(e)+1	S(e,) + S(e2)+1
1	e, llez	(panallel)	W(e,) + W(e) + 1	max (Sle,), Sle,))+1
l	e1, e2	(sequential)	$W(e_1) + W(e_2) + 1$	S(e,) + S(e2)+1