Lee 3 Brick method balanced case \& substitution method
\# Brick method - more on leaf dominated case
\checkmark Sum of all children
Thu Suppose $\cos t(v) \leqslant \alpha \operatorname{cost}$ (children (v)) for all nodes v with input size greater than some $n_{0}, 0<\alpha<1$. Then the overall cost is $O(\cos t$ (banket))

$$
\text { EX. } \quad w(n)=3 w\left(\frac{n}{2}\right)+n
$$

$$
w(n)= \begin{cases}3 w\left(\frac{n}{2}\right)+n & n>42 \\ 2 w(n-1)+1 & 1<n \leqslant 42 \\ 1 & n \leqslant 1\end{cases}
$$

八ス…

Computing cost of base
Usually ... if leaves has $O(1)$ and root is leaves, cost (base of tree $\left.^{\text {ch }}\right)=O($ \# leaves)
Ex. $\omega(n)=a \omega\left(\frac{n}{b}\right)+\cdots$

$$
\begin{aligned}
\text { Neawes } & =a^{\log _{b} n} \\
& =n^{\log _{b} a} \text { by } a^{\log _{b} c}=c^{\log _{b} a} \\
& \in O(n)
\end{aligned}
$$

But some cases are different...

$$
\text { Ex. } \quad W(n)=W\left(\frac{n}{2}\right)+W\left(\frac{n}{3}\right)+\sqrt{n} \ldots
$$

$$
\text { local cost: } \begin{aligned}
& \operatorname{cost}\left(v_{n}\right)=\sqrt{n} \\
& \operatorname{cost}\left(\text { children }\left(v_{n}\right)\right)=\sqrt{\frac{n}{2}}+\sqrt{\frac{n}{3}}=\sqrt{n}\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}\right) \\
&=1.284 \sqrt{n} \\
& \text { So increasing }- \\
& \text { sometimes } \\
& \text { not the case }
\end{aligned}
$$

\# Leaves $L(n)= \begin{cases}1 & \text { if } n \leqslant 1 \\ L\left(\frac{n}{2}\right)+L\left(\frac{n}{3}\right) & \text { else }\end{cases}$
\# Substitution Method
aka guess and check
come up with some function
Ex. (cont) guess: $L(n)=n^{b}$ for some constant b
(BC) $L(n)=n^{b}=1^{b}=1$ for all b.
(IH) Assume for $0 \leqslant k<n, L(k)=k^{b}$.
(IS) $L(n)=L\left(\frac{n}{2}\right)+L\left(\frac{n}{3}\right)$

$$
\begin{aligned}
& =\left(\frac{n}{2}\right)^{b}+\left(\frac{n}{3}\right)^{b} \quad \text { by IH } \\
& =n^{b} \cdot\left(\frac{1}{2^{b}}+\frac{1}{3^{b}}\right)
\end{aligned}
$$

But if we want $n^{b} \cdot\left(\frac{1}{2^{b}}+\frac{1}{3^{b}}\right)=n^{b}$, we need:

$$
\frac{1}{2^{b}}+\frac{1}{3^{6}}=1
$$

§ Wolfroun alpha

$$
\begin{aligned}
b & \approx 0.788 \ldots \\
\Rightarrow L(n) & =n^{0.788 \ldots} \\
W(n) & \in O\left(n^{0.788 \ldots)}\right.
\end{aligned}
$$

since leaves dominated
I if... say base case costs $O(m)$,

$$
w(n, m) \in O\left(m n^{0.788 \cdots}\right)
$$

\# Brick method - balanced tree
If work balanced across levels:
asymptotically the some as imprecise defunction overall cost $\leq \max \left(\operatorname{cost}\left(L_{i}\right)\right)$. \# levels
highest coot level
Ex. Merge sort

$$
W(n)=2 W\left(\frac{n}{2}\right)+O(n)
$$

Note: not all recurrences fall in one of brick cases
\# Cost models

- another layer of abstraction,
the question of asymptotic what? time?

Some types of models..

- Random access machine (RAM) model \leftarrow Good enough for writing

$O(1)$ instructions . read, write, add, multiply. jumps, conditionals...
Sequential complexity in 122: \#instructions on RAM model
Imperfection: read write may not be $O(1)$... (thick cache)
- IO model: won-constant read/write cost
- RAM model but multiple processors

- P-RAM model: that but all processors mun synchrononshy
- P-RAM (ω): variant to allow write at same time
- P-RAM (exclusive w) , -. disallow ..-

Problems. how do we model and partition?
maybe possible, but messy to work with
also synchronisation is costly to implement
\rightarrow but asynchronous makes it even harder to prognaun

- On top of async PRAM - Nested Parallel Work-Span Model
More like a language wit model than machine model

