
Lec 5 Sequences

Recall dependence graph & pebbel game

Greedy strat take at most i+s
Well then at each step we either: - contribute to is ter- contrebute to

- contribute to both

So we fill it+s by greedy scheduling
work span trade off

→ Which to optimise?

I+s... usuallyEcogn worle for deter. amally give up no more that
Array segs

- Primities partin forks as many as it wants
append A B= tab (fn i» if is lAl then Ati]else BE i -IAlI) (IAl + IBI)

subseq tabulate and grab indices?

W= OCIAl + IBI)

Efferent subseq & split mid

type a sed = (a array * start * end)

→ Then openation does index maripulation without necessarily

Nope spec says O(1).
Because values not mutable we

can reference subseq

copying part of the a array.

5=0(1)

iterate, iterate Prefixes,

iterate : (Bx a > p) → B → a sea → Bint

w= 0(# Ewef(xi, Aci]))
I Prof's new symbol, whoops

B = alloc lAl
for i in 0..(n-1)

BLi] =x
x= f (7, ALi])

ret (B, ×)

(Bxx→p) → B → x seq → (Bseq. B)

But if f associative and sinit is left identity of
do things in paralle
→ iterate f I A = reduce fI A

Associative funcs

iteratePrefues:

F, we can

+, *, ^, ...

fC (h., r.), (la,

copy (x.y) = case y 07,

Examples

iterate (merge <) "

reduce (merge <) «

(raals) then
else

• - NONE → x

(le, ri-latre)
(hi-r, + lz, rz)

Wmerge = 0(n) Smerge

<*>:×€A>

<*>:x€A>

= insertion sort

Emerge sort

= O(log n)
W= O(n?)
5= O(nlogn)

w= 0(nlogn)
5=0 (login)

reduce,scan

5= W

Consider :
X=<int >

r=)) = if

→y

Assuming

	

