Lee 5 Sequences
\# Recall dependence graph \& pebbel game
Greedy strut take at most $\frac{w}{p}+S$
Well then at each step we either: - contribute to $\frac{w}{P_{S}}$ term

- contribute to P_{S} term
- contribute to both

So we fill $\frac{\omega}{P}+S$ by greedy scheduling
\# Work span trade off
\rightarrow which to optimise?
$\frac{W}{P}+S_{\ldots}$ usually W first. Usually give up no more than $O(\log n)$ work for better span
\# Array seas

- Primitives $A[i]$, alloc, $|A|$, par For
- Assume partor forks as many as it nouns
append $A B=$ tab $\left(f_{n} i \Rightarrow\right.$ if $i<|A|$ then $A[i]$
else $B[i-|A|])(|A|+|B|)$

$$
w=O(|A|+|B|) \quad S=O(1)
$$

subseq .- tabulate and grab indies?

$$
w=O(t) \quad s=O(1)
$$

Nope spec says $O(1)$.
Because values not mutable we
Efficient subseq \& split mid can reference subseq
type α seq $=(\alpha$ array * start $*$ end $)$
\rightarrow Then operation does index manipulation without necessarily copying part of the a array.
\# iterate, iterate Prefues, reduce, scan
iterate : $\begin{aligned} &(\beta \times a \rightarrow \beta) \rightarrow \beta \rightarrow \alpha \operatorname{seq} \\ & \underset{F}{ } \rightarrow \beta \\ & \text { int }\end{aligned}$

$$
\begin{gathered}
w=O\left(\sum_{\uparrow} \sum_{i=0}^{n-1} w\left(f\left(x_{i}, A[i]\right)\right) \quad S=w\right. \\
\text { Prof's new symbol, whoops }
\end{gathered}
$$

Consider:

$$
\left[\begin{array}{l}
x=\langle\text { int t }\rangle \\
B=\text { alloc }|A| \\
\text { for } i \text { in } 0 . .(n-1) \\
B[i]=x \\
x=f(x, A[i]) \\
\text { net }(B, x)
\end{array}\right.
$$

iteratePrefices : $(\beta \times \alpha \rightarrow \beta) \rightarrow \beta \rightarrow \alpha$ seq $\rightarrow(\beta$ seq $\beta)$
But if f associative and imit> is left identity of F, we can do things in parallel
\Rightarrow iterate $f I A \equiv$ reduce $f I A$
Associative funds

$$
\begin{aligned}
& +, *, \wedge, \ldots \\
& f\left(\left(l_{1}, r_{1}\right),\left(l_{2}, r_{2}\right)\right)=\text { if }\left(r_{2}>l_{2}\right) \\
& \text { then } \begin{aligned}
&\left(l_{1}, r_{1}-l_{2}+r_{2}\right) \\
& \text { else }\left(l_{1}-r_{1}+l_{2}, r_{2}\right)
\end{aligned} \\
& \begin{aligned}
\text { copy }(x, y)=\text { case } y \text { of NONE } & \Rightarrow x \\
& \Rightarrow y
\end{aligned}
\end{aligned}
$$

Examples
Assuming $\omega_{\text {merge }}=O(n) S_{\text {merge }}=O(\log n)$
iterate (merge $\left)\left\rangle\langle\langle x\rangle: x \in A\rangle \leqslant\right.\right.$ insertion sort $\begin{array}{l}W=O\left(n^{2}\right) \\ S=O(n \log \end{array}$
reduce (merge $\left)\left\rangle\langle\langle x\rangle: x \in A\rangle \leftarrow\right.\right.$ merge sort $\quad \begin{array}{l}w=O(n \log n) \\ S=O\left(\log ^{2} n\right)\end{array}$

