Lec 5 Sequences
Recoil dependence graph \$ pebbel game
Greedy strat take at mest
$$\frac{W}{P}$$
 + S
Well then at each step we edder : - contribute to $\frac{W}{B}$ term
- contribute to both
So we fill $\frac{W}{P}$ + S by greedy scheduling
Work span trade off
= Which to optimise?
 $\frac{W}{P}$ + S... usually W first. Unnally give up no more than
 $\mathcal{O}(\log n)$ work for better span _ give up no more than
 $\mathcal{O}(\log n)$ work for better span _ give up no more than
 $\mathcal{O}(\log n)$ work for better span _ give up no more than
 $\mathcal{O}(\log n)$ work for better span _ give up no more than
 $\mathcal{O}(\log n)$ work for better span _ give up no more than
 $\mathcal{O}(1A1+1B1)$ Secons
append A B = tob (fn i ≫ f i < 1A1 then AEI]
else BE[i-1A1] (1A1+1B1)
W= O(1A1+1B1) S=O(1)
Note oper case O(1).
Because values not mutable we
can reference subseq
type a seq = (a array * start * end)
→ Then openation does index manipulation without necessarily
copying part of the a array.

iterate, iterate Prefixes, reduce, scan
iterate, iterate Prefixes, reduce, scan
iterate:
$$(B \times a \Rightarrow B) \Rightarrow B \Rightarrow \alpha \text{ seq} \Rightarrow B$$

 F int A
 $W = O(\not\equiv \sum_{i=0}^{n-1} W(f(x_i, A[i]))$ $S = W$
 Γ Prof's new symbol, whoops

Consider :

$$x = \langle innt \rangle$$

$$B = alloc |A|$$

for i in 0..(n-1)

$$B[i] = x$$

$$x = f(x, A[i])$$

ret (B, x)

tenatePrefixes: (B×a→B) → B → a seq → (B seq, B)

But if f associative and (init > is left identity of F, we cando things in parallel $<math>\Rightarrow$ iterate $f I A \equiv reduce f I A$

Associative funcs

+, *, ^, ... $f((l_1, r_1), (l_2, r_2)) = if (r_2 > l_2) + then (l_1, r_1 - l_1 + r_2)$ else $(l_1 - r_1 + l_2, r_2)$

 $copy(x,y) = case y of NONE \Rightarrow x$ - $\Rightarrow y$

ExamplesAssuming
Whenge = O(n) Smerge = $O(\log n)$ iterate (menge <) () ((x):xEA) < incertion sort</td> $W=O(n^2)$
 $S=O(n\log n)$ reduce (menge <) () ((x):xEA) < merge sort</td> $W=O(n\log n)$
 $S=O(n\log n)$
 $S=O(\log^2 n)$