Lec 7 Alg design techniques continued

* More divide and conquer

Generally... - Base case ... - Inductive case 1. Divide into f(n) parts of g(n) size 2. Recurse

3. Combine results

Skelction

Asumming... W = plit = O(Jn | gn) $W_{combine} = O(Jn)$ Generall ... W(n) = Jn W(Jn) + W = plit(n) Some tree sequence impl) W(n) = Jn W(Jn) + W = plit(n) + W = plit(n)Some tree sequence impl)

parent $\overline{n} \log n$ children $\overline{n} \cdot (\overline{n} \log \overline{n}) = n^{\frac{3}{4}} \cdot \frac{1}{2} \cdot \lg n$ Leave dominated ... $W(n) \in O(n)$

$$S(n) = S(n) + Seplit(n) + Scombine(n)$$

= $S(n) + O(lgn)$

parent $\lg n$ child $\lg Jn = \frac{1}{2} \lg n$ So $S(n) \in O(\lg n)$ Root dominated

Contraction

Break into one piece ... but recursively solve the one piece

- Base case
- Inductive case
 - ". Contract into one piece of size q(n)
 - 2. Recurse on subinstance
 - 3. Expand result to solve original problem

Ex. reduce f I S = cas |S| of $<math>0 \Rightarrow I$ $1 \Rightarrow f(I, Sto])$ $- \Rightarrow let$ $B = \langle f(S[2i], S[2i+1]) | 0 \le i < \frac{|S|}{2} \rangle$ in reduce f I Bend $W(n) = W(\frac{n}{2}) + O(n) \in O(n)$

Ex. scan [comitted]

$$scan op + \partial (2, 1, 1, 4, 5, 2, 1, 3)$$

$$contract$$

$$recursive scan ((0, 3, 5, 8, 13, 7, 17))$$

$$expand ((0, 2, 3, 4, 8, 11, 13, 14), 17)$$

$$W(n) = W(\frac{n}{2}) + O(n) \in O(n)$$

$$S(n) = S(\frac{n}{2}) + O(1) \in O(lg n)$$