Lee 7 Ag design techniques conttimed

* More divide and conquer

Generally...

- Base case ...
- Inductive case

1. Divide into $f(n)$ pants of $g(n)$ size
2. Recurse
3. Combine results

Skeleton

$$
\begin{aligned}
& D C A= \\
& \text { if }|A|=0 \quad \Rightarrow \\
& \text { if }|A|=1 \Rightarrow \\
& \text { else let } \\
& (L, R)=D C\left(A\left[0, \frac{|A|}{2}\right] \| B\left[\frac{|A|}{2},|A|\right]\right) \\
& \text { in }
\end{aligned}
$$

combine (L, R)
end
. but that's long we can actually do reduce combine empty \langle base $(x) \mid x \in A\rangle$
\# Merge with $O(n)$ work $O(\log n)$ span
Let $n=|A|+|B|$, \quad, $L O G, \quad|A|>|B|$
Break into \sqrt{n} subiustances. Each piece also $O(\sqrt{n})$ in size A

B

Binary search to fund corresponding split pouts. All searches in penrallet
recursively merge each piece

Asumining...

$$
\begin{array}{ll}
W_{\text {split }}=O(\sqrt{n} \lg n) & S_{\text {split }}=O(\lg n) \\
W_{\text {combine }}=O(\sqrt{n}) & S_{\text {combine }}=O(\lg n)
\end{array}
$$

Then overall...

$$
\begin{aligned}
W(n) & =\sqrt{n} W(\sqrt{n})+W \text { split }(n)+W \text { combine }(n) \\
& =\sqrt{n} W(\sqrt{n})+O(\sqrt{n} \lg n)
\end{aligned}
$$

parent

$$
\sqrt{n} \log n
$$

children

$$
\ldots \quad W(n) \in O(n)
$$

$$
\begin{aligned}
S(n) & =S(\sqrt{n})+S_{\text {split }}(n)+S \text { combine }(n) \\
& =S(\sqrt{n})+O(\lg n)
\end{aligned}
$$

parent $\lg _{1} n$
child $\quad \lg \sqrt{n}=\frac{1}{2} \lg n$
Root dominated
So $S(n) \in O(\lg n)$

* Contraction

Break into one piece... but recursively solve the one piece

- Base case ...
- Inductive case

1. Contract into one piece of size $g(n)$
2. Recurse on subinstance
3. Expand result to solve original problem

Ex. reduce $f I S=$ cas $|S|$ of

$$
\begin{aligned}
& 0 \Rightarrow I \\
& 1 \Rightarrow f(I, S[0]) \\
& -\Rightarrow \text { let } \\
& B=\left\langle f(S[2 i], s[2 i+1]) \left\lvert\, 0 \leqslant i<\frac{1 s 1}{2}\right.\right\rangle \\
& \text { in }
\end{aligned}
$$

$$
\text { reduce } f I B
$$

end

Shorter subproblem...

$$
\begin{aligned}
& W(n)=W\left(\frac{n}{2}\right)+O(n) \in O(n) \\
& S(n)=S\left(\frac{n}{2}\right)+O(1) \quad(\lg n)
\end{aligned}
$$

Ex. scan [omitted]

$$
\begin{aligned}
& W(n)=W\left(\frac{n}{2}\right)+O(n) \in O(n) \\
& S(n)=S\left(\frac{n}{2}\right)+O(1) \quad
\end{aligned}
$$

