Lee 8 Probability for randomised algorithms
Exam: bring yourself, I handwritten sheet, 4 function calculator
\# Motivation for randomised algorithms

- Can be faster
L sometimes faster by constant factor
L sometimes faster asymptotically
- Can be simpler
- Break symmetry - hopefully low probalibity to choose badly
- Unpredictable
L Running time
L Inconsistent
L Don't know how long each fork takes when parallelised
- Need source of randomness
- Hard to analyse

Ex. Prime test randomised algorithm Polynomial time, simple implementation

Las Vegas algorithm random \rightarrow always right answer
Monte Carlo alg
Random Distance Run
2 giant dice
$1^{\text {st }}$ roll : how many laps for one
$2^{\text {nd }}$ roll : how many more to rum
Define round vars: $D_{1}=$ value of $1^{\text {st }}$ die
$D_{2}=$ value of $2^{\text {nd }}$ die
Expected values...

$$
\begin{aligned}
& E\left[D_{1}\right]=3.5 \\
& E\left[D_{2}\right]=3.5
\end{aligned}
$$

Multiplication works if independent

What about expected sum of 2 dice $\quad E\left[D_{1}+D_{2}\right]=7$ expected product of 2 dice... $E\left[D_{1} D_{2}\right]=\cdots 12.25$
\ldots expected $\max E\left(\max \left(D_{1}, D_{2}\right)\right)=4^{17} / 36<$ Not clearly related to
\# Probability

Sample space $\quad \Omega$
Prob measure $P: P(\Omega) \rightarrow \mathbb{R}$ with:

$$
\begin{aligned}
& \text { 1. } \forall A, \quad 0 \leqslant P(A) \leqslant 1 \\
& \text { 2. } \forall A, B, \quad A \cap B=\varnothing \Rightarrow P(A)+P(B)=P(A \cup B) \\
& \text { 3. } P(\Omega)=1
\end{aligned}
$$

Random vainable neither random nor variable Determistic function $X: \Omega \rightarrow \mathbb{R}$

Expected value of $X \quad E[X]=\sum_{\omega \in \Omega} \underset{\substack{ \\\text { phot of }}}{P(\omega)} \cdot X(\omega)$
Independent X, Y indep if

$$
P[X=a, Y=b]=P[X=a] P[Y=b] \quad \forall a, b
$$

Linearity of expectation $E[X+Y]=E[X]+E[Y] \leftarrow$ (always
Expectation of product $E[X \cdot Y]=E[X] \cdot E[Y]<\binom{$ asemuming }{ independent }
Union bound $P(A)+P(B) \geqslant P(A \cup B)$
Conditional prob $\quad P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
\# Entangled dice
Suppose $2^{\text {nd }}$ die must be same as first die
Expected sum of dice $\rightarrow 7$
Expected product $\rightarrow 15 \frac{1}{6}$
\# Alg analysis with prob
Tail bound

Markov's inequality tool for bounding tail If $x \geqslant 0$ then $P[x>a] \leqslant \frac{E[x]}{a} \quad \forall a$
\# Quicksort
pick random pivot \rightarrow partition \rightarrow recur \rightarrow append unlucky case: picking bad pivot.
Goal: analyse work \& span of rand. alg.

$$
\begin{array}{ll}
W=w_{1}+w_{2} & \leftarrow \text { okay to bound } \\
w_{1}, S_{1} w_{1,}, S_{2} & \left.\begin{array}{l}
S_{2} \\
S
\end{array} S_{1}, S_{2}\right)
\end{array} \leftarrow \text { hand to bound }
$$

\# High probability bound
Say $W(n) \in O(f(n))$ with high probability (w.h.p) if $W(n) \in O(k \cdot f(n))$ with probability $>1-\left(\frac{1}{n}\right)^{k}$ how much worse $<\underset{\begin{array}{c}\text { we cant define } \\ \text { these differently }\end{array}}{\longrightarrow} \begin{gathered}\text { how often does } \\ \text { it violate bound }\end{gathered}$ $\begin{array}{ll}\text { Intuitively, } & k \uparrow \quad 1-\left(\frac{1}{n}\right)^{k} \uparrow \\ & \text { so the higher the violation the less often we } \\ \text { are allowed to violate the bound }\end{array}$

Consider max of n spans

