Lec 9 Probability Bound Analysis # High prob bound Redef Say W(n) $\in O(f(n))$ w.h.p. if $\exists constants c, n_0 s.t.$ $\forall n > n_0$, $\forall k W(n) \leq ckf(n)$ with probability $\geq 1 - (\frac{1}{n})^k$ # Max of spans Consider n spans Suppose there's & prob. that a single span is bad Prob that some of them bad is by union bound & ne P[Some bod] = P[1st being bad U ... U nth being bod] Ex. Suppose each piece has O(lgn) wh.p. $P[indiv good] = 1 - \left(\frac{1}{2}\right)^{k}$ $P[indiv bod] = (\frac{1}{n})^k$ P[some bad] $\in n \left(\frac{1}{n}\right)^{k} = \left(\frac{1}{n}\right)^{k-1}$ $= \left(\frac{1}{n}\right)^{k'} \quad \forall k'$ ⇒ Overall span is $O(\lg n)$ with prob ≥ $1 - (\frac{1}{n})^{k'}$ so w.h.p. composed to O(lgn) # Ex. toy alg. for skittles game jar start with n skätles flip coin, if head east [half of remaining] eke noop Game: Question how many rounds before run out of skittles ? ... worse case os

Define random var
$$\chi_{d} :=$$
 number of skitles at start of round d.
 $\chi_{0} = n$
 $E[X_{d+1}] = \frac{1}{2} E[X_{d}] + \frac{1}{2} \left[\frac{E[X_{d}]}{2} \right]$
 $\leq \frac{3}{4} E[X_{d}]$
 $\Rightarrow E[X_{d}] \leq n \left(\frac{3}{4}\right)^{d}$ are by induction
Cloim: num rounds $\leq 10 \text{ lg n}$ with prob $1 - \left(\frac{1}{n}\right)^{3/3}$
 Proof.
 $E[X_{0:lgn}] \leq n \left(\frac{3}{4}\right)^{10 \text{ lg n}}$
 $= n \cdot n^{10!9} \frac{4}{3}$
 $\approx n \cdot n^{-4/3}$
 $= \frac{1}{n^{3/5}}$
By Morkov's inequality $P[X_{0:lgn} \geq 1] \leq \frac{E[X_{0:lgn}]}{1} = \frac{1}{n^{3/5}}$
 $\Rightarrow P[X_{0:lgn} < 1] = P[X_{0:lgn} = 0]$
 $> 1 - P[X_{0:lgn} \geq 1]$
 $= 1 - \frac{1}{n^{3/5}}$
Lemma: num of rounds $\leq \frac{-(E+1)!}{l_{3}(\frac{2}{3})} \cdot l_{3}$ n with prob $\geq 1 - (\frac{1}{2})^{k}$
 $let c = \frac{-(E+1)!}{l_{3}(\frac{2}{3})}$. $E[X_{0:lgn}] \leq n \left(\frac{3}{4}\right)^{cl_{3}n}$
 $= n \cdot n c^{-l_{3}\frac{2}{3}}$
 $= n \cdot n \left(\frac{-(L+1)!}{l_{3}(\frac{2}{3})}\right) \cdot l_{3}\frac{2}{3}$
 $= n \cdot n^{-(L+1)}$
 $= \frac{n}{n^{k+1}}$
 $= (\frac{1}{n})^{k}$
markov stuff $\cdots \in O(lg n)$

```
# Analyping random select
 An order statistics problem
 Given seg A and rank k, return kth smallest elem of A
                       sort, but not efficient enough

L W = O(n \lg n), S = O(\lg^2 n)
 > One can simply
 \Rightarrow Goal: W = O(n), S = (lg^2 n) w.h.p.
 rselect A k = let
                                         Randomised select by contraction
    p = uniformly randomly selected elem
                                         Partition by pivot, then the cases ...
                                         (L,R) = (xeA: xIl(xeA: x>p)
                                                          -1
 in
                                         O p is the kth
    if k < 1 L1 then select L k
                                         ◎ L longer than k ⇒ recurse on L
   elif K = | L | then p
                                         B L shorter than k ⇒ recurse on R
    else relect R (K-1L1-1)
  Intuition for mahyris
     Δ
                           4
```

- 50% of time picking p between QI and Q3 in that case we eliminate 25% of elems