Lee 10 Random Algorithm II - Order Stats Problem Analysis

Recall: skittle game, search for k-th rank in list
\# Randomised Select Analysis
reelect $A \mathrm{k}=$ let
$p=$ miformly randomly selected elem

$$
(L, R)=\langle x \in \vec{A}: x\langle p\rangle \|\langle x \in A=x\rangle p\rangle
$$

in
if $k<I L I$ then select $L k$
elf $K=|L|$ then P
else reelect $R(k-|L|-1)$

Lucky: pick pivot close to median and eliminate $\frac{1}{2}$
Unlucky: pick close to min I max and eliminate I
Midhck : pick sth between and eliminate $\frac{1}{4}$
Input size unknown...

at level $d+1 \quad 0,1,3 \ldots n+2 n-1 \quad n$ input sire
Let $Y d$ be RV for input len at level $d \quad\left(Y_{0}=n\right)$
Z_{d} be RV for rank of pivot chosen at level d.

$$
\begin{aligned}
\mathbb{E}\left[Y_{d+1}\right]= & \sum_{y} \sum_{z} P\left[Y_{d}=y, Z_{d}=z\right] f(y, z) \\
& \text { prob of hawing input } f \text { lem of }] \\
& \text { rank } y \text { and picking remaining previous input? } \\
& \text { level. corresponds to } \\
& \text { each edge. } \\
= & \sum_{y} \sum_{z} P\left[Y_{d}=y\right] P[Z d=z \mid Y d=y] f(y, z) \\
= & \sum_{y} \sum_{z} P\left[Y_{d}=y\right] \frac{1}{y} f(y, z) \\
= & \sum_{y}\left[P\left[Y_{d}=y\right] \sum_{z} \frac{1}{y} f(y, z)\right]
\end{aligned}
$$

$f(y, z)$ needs to return remaining spout size

z	possible $f(y, z)$
0	$0, y-1$
1	$0,1, y-2$
2	$0,2, y-3$

Worse case...

1	$0,1, y-2$
2	$0,2, y-3$
\vdots	$0, z, y-z-1$

$\sum_{z} f(y, z)$

$$
=\sum_{z=0}^{y-1} \max (0, z, y-z-1)
$$

$z \quad 0, z, y-z-1$
$=2 \sum_{z=y / 2}^{y-1} z$
$\begin{array}{cc}y-2 \quad 0,1, y-2 \\ y-1 \quad 0, y-1 \\ {\left[P\left[Y_{d}=y\right]\right.} & \left.\frac{1}{y} \frac{3}{4} y^{2}\right]\end{array}$
$=\frac{3}{4} \sum_{y} P\left[Y_{d}=y\right] y$

$$
=\frac{3}{4} \mathbb{E}\left[Y_{d}\right]
$$

So $\mathbb{E}\left[Y_{d}\right] \leq n\left(\frac{3}{4}\right)^{d}$
Expected work $\mathbb{E}[w]=\mathbb{E}\left[\omega_{0}+\cdots+\omega_{n}\right]$

$$
\begin{aligned}
& =\sum_{d=0}^{n} \mathbb{E}\left[w_{d}\right] \\
& =\sum_{d=0}^{n} O\left(n\left(\frac{3}{4}\right)^{d}\right) \\
& \in O(n)
\end{aligned}
$$

Expected span $\mathbb{E}[S]$
$\mathbb{E}[\#$ of levels $] \in O(\lg n)$ w.h.p.
(same as skittles game)
$\Rightarrow \mathbb{E}[s] \in O\left(\lg ^{2} n\right)$
\# Quicksort
ont $A=$ if $|A| \leq 1$ then A eke let
$P=$ uniformly selected pivot
$L, R=$ partition in parallel
$L^{\prime}, R^{\prime}=$ qsort $L \|$ qseart R
in $L^{\prime}+\langle p\rangle+R^{\prime}$ end

Analysis by counting the number of comparisons
Define RVs $\quad X_{i, j}=\left\{\begin{array}{lll}0 & \text { if keys ranked } i, j & \text { never compared } \\ 1 & \text { if } \ldots . & \text { are compared }\end{array}\right.$
Indicator RV
Observe: the pivot gets compared to everything. things only get compared if they get picked as pivot and they they don't get compared in recursive calls
if $x<y<z$ and y is pivot, x and z never get compared
WLOG $i<j$

$$
\mathbb{E}\left[X_{i, j}\right]=P\left[X_{i, j}=1\right]=\frac{1}{j-i+1}(2!)
$$

- order for choosing i, j
chance for picking i, j in

$$
\begin{aligned}
\mathbb{E}[W] & =O(\mathbb{E}[\# \text { of comparisons }]) \\
& =O\left(\sum_{i<j} \mathbb{E}\left[x_{i, j}\right]\right) \\
& \leqslant 2 \sum_{i=0}^{n} H_{i} \leftarrow \text { harmonic number } \\
& \in O(n \log n)
\end{aligned}
$$

$\mathbb{E}(S)$ analysis by pivot tree

- recursion tree showing the pivot chosen at each node $\langle 7,5,11,0,9,12,8,14\rangle$, always picking first

from randomised select, we found the length of one path is $O(\lg n)$ w.h.p.
$P[$ one path $>k, \lg n] \leq \frac{1}{n^{k}}$. for all constant k_{1}

UTS $P\left[\exists\right.$ path $\left.>k_{2} \lg n\right]<\frac{1}{n^{k_{2}}}$ for all constants k_{2}
But there are <n paths. By union bound:

$$
\begin{aligned}
P\left[\exists \text { path } \geqslant k_{2} \lg n\right] & \leqslant n \cdot \frac{1}{n^{k}} \text { for all } k_{1} \text {. } \\
& \leqslant \frac{1}{n^{k_{2}}} \text { as long as we choose } k_{1}=k_{2}+1
\end{aligned}
$$

