Lec 10 Random Algorithm I - Order Stats Problem Analysis

Recall: skittle game, search for k-th rank in list

Randomised Select Analysis

rselect A k = let p = uniformly randomly selected elem (L,R) = (xeA: x|| (xeA: x>p) if k < 1L1 then select Lk

elif K = ILI then p else relect R (k-111-1)

Lucky: pick pivot close to median and eliminate \frac{1}{2} Unlucky: pick close to min/max and eliminate 1 Midhick: pick of between and eliminate 4

Input size unknown ...

at level d 0 1 2 3 n-2 n-1 n

at level d+1 0123 ...

possible size decreases for given input size

Let Yd be RV for input len at level d (Yo=n) Zd be RV for rank of pivot chosen at level d.

E[Yd+1] = \(\sum_{z} \) P[Yd = y , \(\text{Z}d = z \)] \(f(y,z) \)

Size y and picking remaining input? size y and picking rank z at previous level. Corresponds to each edge.

$$= \sum_{y=z} P[Y_{d} = y] \frac{1}{y} f(y,z)$$

2	possible f(y, z)
0	0, 4-1
1	0,1,4-2
2	0,2,4-3
Ĭ.	
Z	0, z, y-z-1
:	
y -2	0,1,4-2
9-1	0, 4-1

Worse case ...
$$\sum_{z} f(y,z)$$
= $\sum_{z=0}^{y-1} mox(0, z, y-z-1)$
= $2\sum_{z=y/2}^{y-1} z$
 $\leq \frac{3}{4}y^2$

$$= \frac{3}{4} \sum_{y} P[Y_d = y] y$$

So E[Ya] ≤ n (=)d

Expected work
$$\mathbb{E}[W] = \mathbb{E}[W_0 + \dots + W_n]$$

$$= \sum_{d=0}^n \mathbb{E}[W_d]$$

$$= \sum_{d=0}^n O(n(\frac{3}{4})^d)$$

$$\in O(n)$$

Expected span E[S]

$$E[\# of levels] \in O(lgn)$$
 w.hp.
 $\Rightarrow E[s] \in O(lg^2n)$

(same as skettler game)

Quicksont

Analysis by counting the number of comparisons Define RVs Xi; = { 0 if keys rounted i, j never compared if f --- oure compared Indicator RV

Observe: the pivot gets compared to everything things only get compared if they get picked as pivot and they they don't get compared in recursive calls

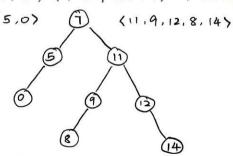
if x < y < z and y is pivot, x and z never get compared

WLOG ici

 $E[X_{i,j}] = P[X_{i,j} = 1] = \frac{1}{j-i+1} (2!)$ $\begin{array}{c} \text{chance for picking } i, j \\ \text{chance for picking } i, j \end{array}$

E[W] = O(E[# of comparisons]) $= \mathcal{O}(\sum_{i < j} \mathbb{E}[x_{i,j}])$ ≤ 2 ∑ H: ← harmonic number € O(nlogn)

E(S) analysis by pivot tree | recursion tree showing the pivot chosen at each node (7,5,11,0,9,12,8,14), always picking first



from randomised select, we found the length of one poth is O(Ign) whop.

P [one path > k, lg n] $\leq \frac{1}{nE}$, for all constant k,

WTS P[\exists path $= k_2 \lg n$] $< \frac{1}{n^{k_2}}$ for all constants k_2 But there are < n paths. By union bound:

P[\exists path $= k_2 \lg n$] $\le n \cdot \frac{1}{n^{k_2}}$ for all k_1 . $\le \frac{1}{n^{k_2}}$ as long as we choose $k_1 = k_2 + 1$