Lec 11 Balanced Binary Tree I

Useful for

- ordered sets

- Remove, insert, find,

- ordered tables

- Red black

- seguences

- BSTs (binary search tree)

More bin tree ops

- insertAt * - append - deleteAt * - ranges - with - split

* will be better than

- map

- intersect - union

- reduce

- difference

- filter

Tree options

- AVL

- Splay - BTree

Weight balanced
2-3 tree
Skip-list

- Red Black

- Treaps

- Skapegoat

So many of them. Want to abstract all the options. Assume there's jointhid for each tree type, implement general operations.

Binary tree

internal binary tree" as we don't store data on the leaves

Balanced := height ∈ O(log n) usually height ≤ 21g n

Note this is always true: height = [lg(n+1)]

height = [1g(n+1)] when

perfectly balanced

Store at nodes

- Value - Balancing noto - Associative into (augmentation)
- Key - Size of subtree

Binary Search Trees

Def Ynode, { ∀ k ∈ Left, K < root ∀ k ∈ Right, root < k

Sequence Tree

Binary tree + size of subtree

Inorder traversal of tree is the sequence

(b, a, c, e, d) sizes

e z a 3 d 1

Exposing: get rid of extra info and return borrebone tree