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#Treap Impl

T= Leaf I node of Tx Ex Ix T
mk Node (A. x. B)

jonM (A, x, B)

px> prA and px> pr B.
prA > pr B »case expese A of

raise Absurd I we defred pr leat = - oI Node (LA, rA, RA) = mkNode (LA, rA, joinM(Ru, x, B)

x, size A + size B +1, B)
→ mkNode (A. x. B)

WE O (depth A + depth B) = each time we go down a level

sO( Ign) = aso Ollgn) whp.n= depth A + depth B

jointl preserves BST property
preserves treepPopuan always

If Table interface

Store key vals in tree, Keep invariants by keys.→ See doeumentation

# Augmentation

Adding extra information in nodes (other than just balancing info s

EE O(Ign) depth

I track size

= node
→ case
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A< x< B



Ex. dynamic paren matching

support: type paren =
tupe dpm
insertAt

istlatched dpm → B

→ Keep track of unmatched left if unmatched right at
every node

# Reduced value augmentation

1. Associate tree T with associative func
its identity I.

2. Modify T to Keep the sum" of fat each node

3. Modify joill to maintain the " sum"
reduceVal:

dpm x paren X II > dpm

4. Add func
at root

f.ExE >E and

TE that returns the sum

Imp
functor: Exf × I → angt

T= leat 1 node of TX EX EX Ix T
reduceVal A = case expose A of leaf * I

1 node (--, 5, -, -) → s
jouM (A, x, B) =

node ( L, x, f(x, f(reduceVal A, reduceVal B), size A + size B t1, R)
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