
Balanced Binary Tree III Treaps

Distribution of tree shape

awen both, treep unique

Es came as debation quest enor he riging
height of treap E OlIgn) whip.

Create RIV Aj = fo I stil is ancestor of so Cinchsive.

depth i) = E A;

ELAj] = PI stil is ancestor of sit]
Inturtion :

i and; are not
ancestor of each other

E [depth (j) 1 = 20 Ti-jlt = Him + Ha-j-1 ≤ 2Hn
< ZInn + 0(1)

El size (il] = ... sth simdar...

Got to have depthlj) E O(Ig n) whe
BUT Elsizeli] E O(Ig n) # size (i) € O(Ig n) whp

< 2In n +000

Lec 13

i=o
size li) =

n - 1

£ Aj

j-il + 1

EE O(Ign) n size

#Treap Impl

T= Leaf I node of Tx Ex Ix T
mk Node (A. x. B)

jonM (A, x, B)

px> prA and px> pr B.
prA > pr B »case expese A of

raise Absurd I we defred pr leat = - oI Node (LA, rA, RA) = mkNode (LA, rA, joinM(Ru, x, B)

x, size A + size B +1, B)
→ mkNode (A. x. B)

WE O (depth A + depth B) = each time we go down a level

sO(Ign) = aso Ollgn) whp.n= depth A + depth B

jointl preserves BST property
preserves treepPopuan always

If Table interface

Store key vals in tree, Keep invariants by keys.→ See doeumentation

Augmentation

Adding extra information in nodes (other than just balancing info s

EE O(Ign) depth

I track size

= node
→ case

(A,

/

A< x< B

Ex. dynamic paren matching

support: type paren =
tupe dpm
insertAt

istlatched dpm → B

→ Keep track of unmatched left if unmatched right at
every node

Reduced value augmentation

1. Associate tree T with associative func
its identity I.

2. Modify T to Keep the sum" of fat each node

3. Modify joill to maintain the " sum"
reduceVal:

dpm x paren X II > dpm

4. Add func
at root

f.ExE >E and

TE that returns the sum

Imp
functor: Exf × I → angt

T= leat 1 node of TX EX EX Ix T
reduceVal A = case expose A of leaf * I

1 node (--, 5, -, -) → s
jouM (A, x, B) =

node (L, x, f(x, f(reduceVal A, reduceVal B), size A + size B t1, R)

(1)
OCIgn)
O(1) ?

	

