

- C_2 v.u in diff SCC ~ u visited before $v \Rightarrow \prod_{u=1}^{\nu}$
- <u>C3</u> v.u in diff SCC ∧ u visited after v ⇒ ... otherwise u.v in same SCC so we can't go back

Trace

G⁻⇒

Correctness

Observe: When first reach each SCC U: via vert u: in rev finish order: 1. SCCs left of Ui already completely visited 2. reach G' ui will not visit anue SCCs -1: will not visit any SCCs to right of Ui 3. reach GT u: will visit all verts in U: where left / right identified by first appearance of vert in SCC in F <begahfdci> $\begin{array}{ccc} \uparrow & \uparrow & \uparrow \\ u_2 & u_3 & u_4 \end{array}$ ú, Notice 1-3 ⇒ reach GT in visit exactly U: If \land is current, all of <--- unreachable from \land in G otherwise F is not rev finish time order ⇒ ~ unreachable from any of ← in G^T # shortest path problem Def weighted grouph has some weight for each edge G = (V, E, w) $w : E \Rightarrow R$ one representation G: (V, (V, R) table) table S(u,v) := shortest path with min edge weights from u to v

Def Single-pair shortest path problem (SPSP)
Given u.v., find & (u.v.)
Def Single-source -- (SSSP)
Given u., find
$$\delta(u,v)$$
 $\forall v$ reschable from u
Def All-pairs --
 $\forall u. \forall v$, find $\delta(u,v)$
Priority first cearch (PFS) aka best-first search
Decide where to search by order returned by come priority func
vie. pick $U = F$ by indext priority
Ex. beam search, A^* , dijkstra
Dijkstra's proparty:
if # neg edge weights in G, let $p(v) = \min_{u \in X} (\delta(s.u) + w(u.v))$
then $v \in V \setminus X$ with smallest $p(v)$ has $\delta(s,v) = p(v)$
Dijktra's algorithm:
use the above p as priority in PFS (record $p(v)$ for each vert v
when $w = v'ait v$)
Ex.
S a b c d $\delta(s.s) = 0$
 $0 \approx s \approx s \leq d = 7$
 $g = 14 = 7$
 $g = 14 = 7$