Lee 17 Kosaraju's Alg shortest path
\# Strongly connected component (SCC)
Def A subset of versts $S \subseteq V$ is strongly connected (SC) if $\forall v e S, \forall u \in S$, u reachable from v
Def If $S \subseteq V$ is $S C$ and is maximal, it's a strongly connected component
Ex.

Claim Contracting the SSCS \leftarrow else one of those SSC not
Clam contracting the SSCS gets you a DAG maximal.
\rightarrow turn SACs into verts and add edge by reachboility btwn components

Def The SCC problem: fund the SACs in graph and return them in topological order

Lemma For directed graph G, if $u \in V$ is first-visited vert in its SCC, all versts v reachable from u funsh before u in a DFS
Cl vie in same $S C C \Rightarrow \stackrel{\leftarrow}{\stackrel{\sim}{\longleftrightarrow}}$
C2 v.u in diff $\operatorname{scc} \wedge u$ visited before $v \Rightarrow \stackrel{\sim}{u}$
C3 v.u in diff SCC $\wedge u$ visited after $v \Rightarrow \quad v_{v}$
... otherwise uv in sum e SCC so we can't go back
\# Kosaraju's Algorithm

$$
\begin{aligned}
& \operatorname{scc} G=(V, E)= \\
& \text { let } \\
& F=\text { reverse FinishTine } G \\
& G^{\top}=\text { transpose } G \text { (reverse the edges) } \\
& \text { visited verbs } a^{\text {sc star }} \\
& \text { accumsCCs }((X, L), u)= \\
& \text { Let }- \text { overall visited } \\
& \left(X^{\prime}, A\right)=\operatorname{reach} G^{\top} X u \\
& { }^{*} \text { newly visited }{ }^{\circledR} \text { search for all reachable from } X \\
& \Delta \text { If } A=\phi \Rightarrow \text { we sow new } S C C \\
& \text { in } \\
& \text { if } A=\varnothing \text { then }(X, L) \text { else } \\
& \text { (} \left.x^{\prime}, \quad L+\langle A\rangle\right)
\end{aligned}
$$

in
iterate accumscC $(\phi,\langle \rangle) F$ end

Cost $2 \times D F S$, so actually linear time
Trace

$F \Rightarrow\left\langle\frac{b}{\text { latest funsh }} \boldsymbol{e} a \operatorname{f} d \quad c \quad i\right\rangle$

$$
G^{\top} \Rightarrow
$$

$$
\{\text { no more to add }
$$

Correctness

Observe:
When first reach each SCC U_{i} via vert u_{i} in rev finish order:

1. SCCs left of U_{i} already completely visited
2. reach $G^{\top} u_{i}$ will not visit any SACs to right of U_{i}
3. reach $G^{\top} u_{i}$ will visit all verts in U_{i}
where left / right identifled by first appearance of vert in SCC in F

Notice $1-3 \Rightarrow$ reach $G^{\top} u_{i}$ visit exactly U_{i}
If Δ is current, all of \longleftarrow unreachable from Δ in G otherwise F is not rev finish time order
$\Rightarrow \Delta$ unreachable from any of \longleftarrow in G^{\top}
\# shortest path problem
Def weighted graph has some weight for each edge

$$
G=(V, E, \omega) \quad \omega: E \Rightarrow \mathbb{R}
$$

one representation $G:(V,(V, \mathbb{R})$ table $)$ table $\delta(u, v):=$ shortest path with min edge weights from u to v

$$
\begin{aligned}
& \text { reach } G^{\top} \varnothing b \quad \Rightarrow\{b, e, g\} \quad\langle\{b, e, g\}\rangle \\
& \text { reach } G^{\top}\{b, e, g\} \quad \Rightarrow \varnothing \varnothing \\
& \text { reach } G^{\top}\{b, e, g\} \quad \Rightarrow \quad \varnothing \\
& \text { reach } G^{\top}\{b, e, g\} \quad a \quad \Rightarrow\{a, d, h\} \quad\langle\{b, e, g \xi,\{a, d, h\}\rangle \\
& \{b, e, g \cdot a, d, h\} \quad h \Rightarrow \phi \\
& f \Rightarrow\{f\} \quad\langle\{b, e, g\},\{a, d, h\},\{f\}\rangle \\
& \cdots \quad\{b, e, g, a, d, h, f\} d \Rightarrow \phi \\
& c \Rightarrow\{c, i\} \quad\langle\{b, e, g\},\{a, d, h\},\{f\},\{c, i\}\rangle
\end{aligned}
$$

Def Single-pair shortest path problem (SPSP) Given u, v, fund $\delta(u, v)$

Def Single-source
(ASP)
Given u, find $\delta(u, v) \forall v$ reachable from u
Def All-pairs
$\forall u, \forall v$, fund $\delta(u, v)$
\# Priority-furst search (PFS) aka best-first search
Decide where to search by order returned by some priority func viz. pick $U s F$ by highest priority Ex. beam search, A^{*}, dijkstra

Dijkstra's property:
If \# neg edge weights in G, let $p(v)=\min _{u \in X}(\delta(s, u)+w(u, v))$
then $v \in V \backslash X$ with smallest $p(v)$ has $\delta(s, v)=p(v)$
Dijkstra's algorithm:
use the above P_{0} as priority in PFS (record $p(v)$ for each vert v
when we visit v)

Ex.

s	a	b	c	d
0	∞	∞	∞	∞
	10	∞	5	∞
	8	14		7
	8	11		
		9		

$$
\begin{array}{rl}
\delta(s, s) & =0 \\
s & c
\end{array}=50
$$

