Lee 20 Star Contraction \& Connectivity
\# Graph contraction
parallelism, pdylog span, root dominated work contract to get constant fraction smaller

Defs Graph partition := subgraph $H=\left(V^{\prime}, E^{\prime}\right)$ with $V^{\prime} \leqslant V$ and $E^{\prime}=$ $\left\{\{u, v\} \in E \mid u, v \in v^{\prime}\right\}$ viz. cut out verts and keep reasonable edges

Given partitions $H_{1}, \ldots, H_{k-1},\{u, v\} \in E$ is

- internal edge if $u, v \in V_{i}$
- cut edge if $u \in V_{i}, v \in V_{j}, i \neq j$

Quotient graph is contracted, smaller graph
Supervert is vert in quotient that verts in orig graph "merged" to
Reps 1. Label for each part
2. Map from vert to their part label

General Contraction
BC Small graph \Rightarrow compute result
IC Contract Make quotient

- Partition
- Turn part into vert

- Drop internal edges
- Point cut edges elsewhere (maybe remove dups)

Recur Solve on contracted graph
Expand Get result for bigger graph
\# Edge contraction
When each part is a vert or are edge.
First we need to fund matching
\rightarrow Greedy: for $e \in E$, keep adding e to M if possible sequential, always within \rightarrow Random: parallel assignment, local decisions

Coin flip
Flip com for each edge, contract head st. no neighbouring edge is head

This gives constant fraction on some graph but not others
\rightarrow Cycle graph each edge $\frac{1}{8}$ prob contracted, so \mathbb{E} contract $\frac{m}{8}$
\rightarrow Star graph $I P$ then we only contract max 1 edge.
\# Star Contraction
Each part looks like a star with center \& satellites
\rightarrow Sequential: pick center, add all nbors as satellites, remove, repeat
\rightarrow Random: flip com on each vert, turn H^{-}into centers, for each T try to contract into neighbouring H, then turn T
 that failed to merge into center
starPart $(G=(U, E))=$
let

$$
T H=\{(u, v) \in E \mid u \text { tail } \wedge v \text { head }\}
$$

$P_{s}=\bigcup_{(u, v) \in T H}\{u \mapsto v\} \leftarrow$ point sars to centers
$V_{c}=V \backslash \operatorname{domam}\left(P_{s}\right) \quad \leftarrow$ center verts
in $P_{c}=\left\{u \mapsto u: u \in V_{c} \xi<\right.$ center contract to center $\left(V_{c}, P_{s} \cup P_{c}\right)$
end
Cost

$$
\left.\begin{array}{l}
w=O(n+m) \\
S=O(\lg n)
\end{array}\right]
$$

with array seq

Fact for G with n non-isolated verts, \mathbb{E} satellites $\geqslant \frac{n}{4}$

Contraction alg
starContract base expand $(G=(V, E))=$ if $|E|=0$ then base V else let
$\left(V^{\prime}, P\right)=$ starPart $(V, E) \quad$ s remove calf edge
$E^{\prime}=\{(P[u], P[v]):(u, v) \in E \mid P[u] \neq P[v]\}$
$R=$ starContract base expand $\left(V^{\prime}, E^{\prime}\right)$
in
expand (V, E, V, P, R)
end
Cost (star contract until $|E|=0$)
Assume: $\quad W_{\text {base }}=O(|V|) \quad S_{\text {base }}=O(1)$

$$
\begin{aligned}
& W \text { expand }=O(|V|+|E|) \quad \text { Sexpend }=O(\lg (|V|+|E|) \\
& W=O((m+n) \lg n) \quad S=O\left(\lg ^{2} n\right)
\end{aligned}
$$

\# Application : Graph Connectivity
Prob Given undirected G, fund all $C C$ s by specifying them as vert set
\rightarrow Could do BFS or DFS, but slow
Contraction alg
connected Components $(G=(V, E))=$
if $|E|=0$ then $(V,\{v \mapsto v: v \in V\})$
else let
$\left(V^{\prime}, P\right)=\operatorname{starPart}(V, E)$
$E^{\prime}=\{(P[u], P[v]):(u, v) \in E \mid P[u] \neq P[v]\}$
$\left(V^{\prime \prime}, C\right)=$ connectedComponents $\left(V^{\prime}, E^{\prime}\right)$
in

$$
\left(v^{\prime \prime},\{u \mapsto C[v]:(u \leftrightarrow v) \in P\}\right)
$$

end

