
Lec 22 Dynamic Programming (DP)

Idea: solving subinstances and saving results in useful way

General structure things like data
transformation may not beone of there

O. Start with some decision | optinisation / counting problem
with there at thost.find does poth me gary pating

1. Develop recursive solution

2. Recognise how to reuse results from cubinstances

3. Count mum of unique subinstances for analysis

4. Implement
- Memorsadion

- Boitom-up

#Fibonacci example

fb (n) = if (ns 1) then 1 else

Call tree fibb s

fib (n-2) + fib (n - 1)

work 0 (Ф")
span O (n)

Result dependency

So we need 6 = n+1 unique instanceswork O(n)
span O(n)

4 3

¢ = 15+1

2 Bad: C

4

Bottom-up Impl

fib n =
let

loo a bin.
else loop

oop 110

then a
b (atb) (k+1)

Subset sum problem (SS) NP- hard

Given set SS It and keIt, is there XES, Ex=k?

→ Actually the base for some crypto system that was broken

Even though NP-hard it's easy to fund sol for
Pseudopoly -

some iput .

Recursive sol

polynomial to k, so if kite pay fo tsi we get

SS (S, k)K.
(-, 0) > true

1(I], -) = false
1(x::xs, k) >

-hard to memorse as key
case (S,k) of

if ks x then SS (xs, k) else
SS (xs, k-x) onelse SS (xs, k)

W(n) = 2W(n-1) + 0(1)

Ex. S= [1,1,1] k=3
[1.1,11,3

exponential!

= opportunities for reuse

11,0 [], 1 I] 03.2 [3. 0],2 [3,2 [],3

K'ELO, ... K3 , IS'I€2O..... ISI3
so num unique substances is (IS| +1)(k+ 1)

in

end

5,13, 2

C7. £13.2

[1,1.3

07.2 I],3
^

If reuse results, work O(IS/ k)
spam O (ISl+1)

Representing lookup table

Do tade at te it time, as hey, but f input has hast how
In practice try convert subunstance to integer
SS (S, k) =

let
n= IS1 , use this as key to table, or even 2D array
ss' (i, k'), = (case (i, k') of

(-, 0) = true
1(n, -) → false A should look up here

Ili, k'l'→ if (k« SCi]) then SS' (itl, k) exek'-SCi]) orelse SS'(itl,

ss' (0, k)
end

Counting problem example

Count number of rooted binary tree shope with size n
shapes count

left subtree size left sabinee right subtree

in
ss'(i+1, k')

2

3

!
5

T(n) = n - 1

if nel

i=o"
else

Num unique subinstances = n+1

Work per subunstance - O(n) to do the sum
spon - O(lgn) reduce opt

Overall work

Êo(lgi) eO(ngn)

	

