Lee 22 Dynamic Programining (DP)
Idea: solving subinstances and saving results in useful way
\# General structure
0. Start with some decision I optimisation I counting one of these

1. Develop recursive solution
2. Recognise how to reuse results from subinstances
3. Count nun of unique subinstances for analysis
4. Implement

- Memorisation
- Bottom-up
\# Fibonacci example
$f i b(n)=$ if $(n \leq 1)$ then 1 else fib $(n-2)+f i b(n-1)$
Call tree fibs 5

Result dependency

So we need $6=n+1$ unique instances
work $O(n)$
span $O(n)$

Bottiom-up Imp l
fib $n=$
let
loop $a b k=$
if $k=n$ then a
else loop $b(a+b)(k+1)$
in
loop 110
\# Subset sum problem (SS) NP -hard
Given set $S \subseteq \mathbb{Z}^{+}$and $k \in \mathbb{Z}^{+}$, is there $X \leq S, \quad \sum_{x \in X} x=k$?
\rightarrow Actually the base for some crypto system that was broken
Even though NP -hard it's easy to find sol for some input.
Pseudopoly - polynomial to k, so if k itself poly to $I S i$ we get poly to $|s|$

Recursive sol

$$
\begin{aligned}
& S S(S, k)^{\prime}=\text { case }(S, k) \text { of } \\
& (-, 0) \Rightarrow \text { true } \\
& I([],-) \Rightarrow \text { false } \\
& \mid(x:: x s, k) \Rightarrow \text { if } k<x \text { then } S S(x s, k) \text { else } \\
& \qquad S S(x s, k-x) \text { orelse } S S(x s, k)
\end{aligned}
$$

$W(n)=2 W(n-1)+O(1)$ exponential:
Ex. $\quad S=[1,1,1] \quad k=3$

[],0[],1[],1[],2[],1[],2[],2[],3

$$
k^{\prime} \in\{0, \ldots, k\}, \quad\left|S^{\prime}\right| \in\{0, \ldots,|S|\}
$$

so nim unique subinstances is $(|s|+1)(k+1)$

If reuse results, work $O(|s| k)$
span $O(|s|+1)$
\# Representing lookup table
Our table wants to have subinstances as key, but if input has hist how to hash I compare list? Expensive!
In practice try convert subiustance to integer

$$
s s(s, k)=
$$

let
$n=|S|$ use this as key to table, or even 2D array
Ss' $\left(i, k^{\prime}\right)=$ (case (i, k^{\prime}) of
$(-, 0) \Rightarrow$ true
$1(n,-) \Rightarrow$ false $\quad \Delta$ should look up here
$1\left(i, k^{\prime}\right) \Rightarrow$ if $(k<s[i])$ then $s s^{\prime}(i+1, k)$ eke $S S^{\prime}\left(i+1, k^{\prime}-S[i]\right)$ orelse $s S^{\prime}\left(i+1, k^{\prime}\right)$
in
ss' $(0, k)$
end
\# Counting problem example
Count number of rooted binary tree shape with size n $n \quad$ shapes
0ϕ

2

3

$$
T(n)= \begin{cases}1 & \text { if } n<1 \\ \sum_{i=0}^{n-1} T(i) T(n-i-1) & \text { else }\end{cases}
$$

left cubtree size left subsree right cubtree

Nom unique subiustances $=n+1$
Work per subustance $-O(n)$ to do the sum span - $O(\lg n)$ reduce op+
Overall work $\sum_{i=0}^{n} O(i) \in O\left(n^{2}\right)$

$$
\sum_{i=0}^{n} O(\lg i) \in O(n \lg n)
$$

