
Concurrent Data Structure & Work Stealing Scheduling

Rey ideas
- Lock-free data structure
- Linearisation

- Compare and swap
- Concurrent deque
- Randomised stealing

Recall greedy schedulingworld we need to find work to schedule

Working with asyne, parallel processors

Model

Assume arbitnary interleaving

can deay

can get dutched leak nate

r. « memLa]
ri = ri+l
mem [a] = r,

ret memla]
12=12+1

mem [a] = ra
mace condion a ville+1 or +2

Lock-free data structure

Def Lock free data structure
- Supports certain operations
- Shared across processes
- Aust o-to process making proceda around entical code)

Linearisability

Operations: load, increment push, pop

"They can appear interteaved but comectners captured sequentially

Lec 25

(CAS)

T= p+s

memory

cores

PI P2

#Compare and swap
On 186: CMPXCHG

Avalogous to:

CAS: a ref → (a xx) » bool
r (old, new) = Note this code is not safe.

Processor implements this on
hardware level as instruction

if a = old then (r:= new; true)
else false

Linearisable mcrement =no lock involved

Inc (r: int ref) =
let

+ CAs r (a, a+1) then ()
else Inc r

end

#Work stealing scheduler (randomised)

How to do fIg?

→ Fate thread id is jo chand data structure
Each processor keeps a deque DO

lock-free, liverrisable pushbot popbot

- When encountering flld on processor p

DQp. pushbot (g)

wait for result of g

• If processor p done or while waiting

CAS
let

a =!r

end

in
a =!r

casome ap. popboth of
None → repeat (randomly steal from top of another processor's DQ)

Anarysis — why this works well

'- Most of the tune stealing oron work
we prioritse push and pop from botow → good locality

Then number of steals to attempt is in O(PS)
time is in O(K+s)
P= mum processors
s= span

	

