
15-251 Great Ideas in Theoretical Computer Science

15-251 Great Ideas in Theoretical Computer Science

Notes by Lómenoirë Mortecc.

Taught by Professor Anil Ada and Professor Pravesh Kothari

A big picture of theoretical computer science, from formalising computation to complexity theory and
to various subfields of theoretical computer science, each topic being an introduction to courses that
focus on that topic.

Fall 2023

1

Contents

Contents

§ 1 Course Introduction ... 5
1.1 A Computer Science Perspective ... 5

1.1.1 What’s Theoretical Computer Science (TCS) .. 5
1.1.2 Formalising computation ... 5
1.1.3 Main Problems in TCS .. 6
1.1.4 Math vs Cilantro .. 6

1.2 A Mathematical Perspective ... 7
1.2.1 Computers and Proofs .. 7
1.2.2 From Good Old Regular Mathematics (GORM) to FORM .. 7
1.2.3 Contributors to FORM and Their Ideas .. 7

§ 2 String, Encoding, and Language .. 8
2.1 Mathematical Representation of Data .. 9

2.1.1 Characters and Strings ... 9
2.1.2 String Operations .. 10
2.1.3 String Encoding .. 10

2.2 Language ... 11
2.2.1 Operations on Languages .. 12

2.3 Computation as Function on Strings .. 12

§ 3 Deterministic Finite Automata ... 13
3.1 Terminology ... 14
3.2 Defining Deterministic Finite Automata (DFA) ... 14

3.2.1 Language and DFA .. 15
3.2.2 Formal Definition of DFA .. 16
3.2.3 Applications of DFAs .. 17

3.3 Regular and Non-Regular Languages ... 17
3.3.1 Closure Properties of Regular Languages .. 18
3.3.2 Recursive Definition of Regular Language .. 20

§ 4 Turing Machines (TMs) ... 20
4.1 Preamble .. 21

4.1.1 Coming Up with TMs (Modern Perspective) .. 21
4.1.2 Coming Up with TMs (Turing’s Perspective) ... 22
4.1.3 Key Differences Between DFAs and TMs .. 22

4.2 Formal Definition of TMs .. 22
4.3 Universality of Computation .. 23

4.3.1 TM Subroutines, Tricks, and Description .. 23
4.3.2 Universal Machines ... 24

4.4 The Church-Turing Thesis ... 24
4.5 Decidability ... 25

4.5.1 Closure Properties of Decidable Languages .. 26
4.5.2 Semi-Decidability .. 27

§ 5 Limits of Computation .. 27
5.1 Limits of Counting .. 28

5.1.1 Cantor and Infinite Sets ... 28
5.1.2 Countable Sets .. 29
5.1.3 Diagonalisation .. 30

2

Contents

5.1.4 Uncountable Sets ... 31
5.2 Limits of Computation ... 31

5.2.1 Diagonalising Turing Machines ... 32
5.2.2 Proving Undecidability by Reduction ... 32
5.2.3 More Undecidable Languages ... 33
5.2.4 Consequences of Undecidability .. 35
5.2.5 Non-Semi-Decidable Decidable Languages ... 35

5.3 Limits of Human Reasoning: Gödel’s Incompleteness Theorems .. 36
5.3.1 FORM Essentials .. 36
5.3.2 Proving Things About FORM .. 36
5.3.3 Incompleteness Theorems ... 37

§ 6 Time Complexity .. 38
6.1 Analysing Complexity ... 39
6.2 Asymptotics .. 40
6.3 Complexity Model ... 41
6.4 Long Number Operations .. 41

§ 7 Graph Theory ... 42
7.1 Undirected Graphs .. 43

7.1.1 Neighbourhood .. 43
7.1.2 Walks and Paths ... 44
7.1.3 Connectedness .. 44

7.2 Trees ... 45
7.3 Mininum Spanning Tree (MST) ... 46
7.4 Directed Graph .. 47
7.5 Graph Search .. 47

7.5.1 Any-First Search (AFS) ... 47
7.5.2 Breadth-First Search (BFS) ... 48
7.5.3 Depth-First Search (DFS) ... 48

7.6 Graph Matching .. 48
7.6.1 Maximum Matching .. 49
7.6.2 Bipartite Graphs and 𝑘-Colourability ... 51

7.7 Stable Matching ... 52
7.7.1 Gale-Shapley Algorithm .. 53

§ 8 P vs NP .. 55
8.1 Polynomial-Time Reduction ... 56

8.1.1 Some Problems of Interest ... 56
8.1.2 The P vs NP Problem ... 57
8.1.3 Polynomial Time Reduction Methods .. 57

8.2 Computational Hardness and Completeness .. 58
8.3 Non-Deterministic Polynomial Time (NP) .. 58

8.3.1 NP-Completeness .. 59
8.4 Example Reductions ... 60

§ 9 Randomised Algorithms ... 60
9.1 Probability Theory .. 61

9.1.1 CS Approach to Probability Theory .. 61
9.1.2 Probability Concepts to Know .. 61

9.2 Randomised Algorithms .. 62

3

Contents

9.2.1 Randomised Algorithms Definitions ... 62
9.2.2 Randomised Maximum Cutting ... 64
9.2.3 Randomised Minimum Cutting .. 65

§ 10 Cryptography .. 66
10.1 Modular Arithmetics .. 67

10.1.1 Many Definitions ... 67
10.1.2 More Definitions .. 67
10.1.3 Modular Exponentiation .. 69
10.1.4 Complexity of Modular Operations .. 69

10.2 Private Key Encryption ... 70
10.2.1 One-Time Pad ... 70
10.2.2 Diffie-Hellman Key Exchange .. 71

10.3 Public Key Encryption ... 71
10.3.1 ElGamal ... 71
10.3.2 RSA ... 72

4

Course Introduction

Chapter 1: Course Introduction

1.1 A Computer Science Perspective
Computer science is no more about computers than astronomy is about telescopes.

Computer is more than just a machine. Many phenomena have properties of computation, and if we
examine them from the lens of computer science, they seem just like computers.

Ponder 1.1.1

A physics analogy

• Theoretical physics — mathematical models (why is nature mathematical? we don’t know)
• Experimental physical — observe and test theory
• Application / Engineering — use new understanding to solve things

Other analogy…

• Is human brain a computer? Probably
• Evolution in nature
• Chemistry
• …

1.1.1 What’s Theoretical Computer Science (TCS)
But first, what is computation?

Definition 1.1.1

• Computation — the manipulation of data
• Algorithm — how to manipulate data
• Computational problem — input-output pairs

A computer performs computation, so it’s a box that takes input data and produces output data.

input → computer → output

Like theoretical physics, TCS makes observations about computation in the real world, builds a math-
ematical model of computation in the abstract world, explores new knowledge in the abstract mathe-
matical world, and eventually applies new knowledge in the real world.

So, TCS starts by defining some mathematical model of computation.

1.1.2 Formalising computation
David Hilbert asked some mathematical questions that arguably led to the development of computer
science:

5

Course Introduction

Does there exist a finite procedure (later known as algorithm) to determine whether a multivariable
polynomial with integer coefficients has an integer solution?
(one of Hilbert’s 23 open problems)

Is there a finite procedure to determine if a mathematical statement is true or false?
(known as the Entscheidungsproblem)

The questions concerned not specific mathematical statements, but the procedure of doing math itself.
They turned out fundamental to mathematical reasoning… and that the answers to both questions
were no.

But to answer the two questions, mathematicians soon realised they didn’t have a formal definition
for algorithm… until lambda calculus and Tring Machine were proposed. Turing Machine captures
computation in a simple and convincing way, but lambda calculus was less obvious. It turns out that
the two were equivalent. The Church-Turing thesis says that any computational problem solvable by
physical processes can also be solved by a Turing Machine.

Returning to Hilbert’s problems… no Turing Machine can compute those two.

1.1.3 Main Problems in TCS
Like Hilbert’s problems, we care about how well something can be computed.
• Computability
• Computational complexity (aka practical computability)

• Time
• Space
• Randomness as a resource
• Quantum resources

There are different camps for how to approach computability problems:
• Algorithm designers — try to come up with more efficient algorithms
• Complexity theorists — prove the lowest possible complexity¹

¹usually hard!

Some example problems in problems in TCS
• P vs NP problem
• Does time and space efficiency imply each other?
• Can we solve some problems by randomisation/determinism?
• Fairness in socioeconomics
• Computational game theory
• Learning theory (what’s happening with those machine learning models?)
• Quantum computation (how to use quantum to solve problems?)

1.1.4 Math vs Cilantro

“Mathematics is like… cilantro”
“There are 5 kinds of people when it comes to cilantro.”

1. Don’t know what it is
2. Like it
3. It’s fine

6

Course Introduction

4. Don’t like it
5. Genetic condition that makes cilantro taste like soap

1.2 A Mathematical Perspective

1.2.1 Computers and Proofs

Ponder 1.2.2

There may exist some very hard-to-prove statements. For example:
• 313(𝑥3 + 𝑦3) = 𝑧3 has no positive integer solution
• You can’t break a solid 3D ball into finite pieces, put them back together, and get 2 identical balls.
• 1 + 1 = 2

How does one prove it?
• Proof by lack of counterexample? No counterexample after trying many numbers? No
• “it’s obvious” Hmmm is it really?

Proof by computer search? It’s doable but does not give insight nor explain the logic behind the
proof. But is a requirement for proofs to give insight? Maybe not. We have zero-knowledge proofs
and that does not give insight.

1.2.2 From Good Old Regular Mathematics (GORM) to FORM
Traditionally mathematical reasoning takes the form of:

axioms → logical reasoning → theorems (new knowledge)

But in the late 1800s, problems start to arise with GORM:

• Can we agree on the same set of axioms to build math on?
• What is obvious truth? Could it depend on environment and interpretation (think Flatland)
• How to understand infinity
• Russel’s paradox
• Using human language (ambiguous!)

So people wanted absolute formalism beyond GORM. We call it FORM. FORM needs to be a mathe-
matical model for GORM, but then… what’s the right model? It turns out we need computation.

1.2.3 Contributors to FORM and Their Ideas
• Aristotle - unambiguity, reasoning, axioms
• Euclid - geometry reasoning
• Leibniz - calculate what’s right
• Boole - propositional calculus
• Cantor - set theory with infinity
• Frege - first-order logic (predicate calculus), axiom for set theory
• Russel - “set of all sets that do not contain themselves” — boom contradiction
• Russel + Whitehead - Principia Mathematica

• formalizes 1 + 1 = 2²
• showed that formalisation is possible

• Hilbert - Hilbert’s programme
• find precise formal language, manipulate by well-defined rules

7

Course Introduction

• completeness and consistency
• algorithm to decide provability

• Gödel - Incompleteness theorem
• Turing - No algorithm for provability

²their footnote says “this above proposition is occasionally useful”

Despite that…

• We can formalise mathematical proofs
• There is limits to provability
• Birth of computer science
• Computers… can help with formal proofs

Example 1.2.1

Proving Kepler’s conjecture (1611): the best way to pack spheres is to put them in a pyramid kind
of shape…

2005, Tom Hales at UPitt came up with a 120-page proof (at the same time lots of code to solve
optimisation problems)… 20 reviewers couldn’t decide its correctness for 4 years and gave up (one
died).

In 2015, the proof was formalised and checked by computer. So we can have proof checkers!

Example 1.2.2

Robbins conjecture: all Robbins algebras are Boolean algebras

Opened for 63 years, but was proved by computer.

8

String, Encoding, and Language

Chapter 2: String, Encoding, and Language

Ponder 2.0.1

input → computer → output

Computer takes some input information, does some computation, and produces some output in-
formation, but how do we formalise the input and output information?

Also, what’s information in the first place?

• System with only 1 state → no information
• System with 2 states → 1 bit of information
• System with probabilistic state → hmm

Maybe has to do with the number of states…

Definition 2.0.1

Information is the number of possible states, and its unit is bits.

2.1 Mathematical Representation of Data

2.1.1 Characters and Strings

Definition 2.1.2

• Alphabets Σ = non-empty, finite set of symbols
• Symbol / Character = elements of some Σ
• String / Word = sequence of elements from some Σ

• 𝑠 = 𝑎1𝑎2𝑎3…𝑎𝑛 where 𝑎𝑖 ∈ Σ
• 𝑠 = 𝜀 for empty string
• |𝑠| for length of string

• Σ𝑘 = set of all length-𝑘 strings over Σ
• Σ∗ = set of all finite-length strings over Σ

Example 2.1.1

Alphabets
• English Σ = {𝑎, 𝑏, 𝑐, 𝑑, …, 𝑧}
• Greek Σ = {𝛼, 𝛽, 𝛾, 𝛿, …, 𝜔}
• Binary Σ = {0, 1}

Sigma stars
• {0, 1} ∗ = {𝜀, 0, 1, 00, 01, 10, 11, …}
• {𝑎} ∗ = {𝜀, 𝑎, 𝑎𝑎, 𝑎𝑎𝑎, …}

9

String, Encoding, and Language

Fact 2.1.1

Σ∗ is countably infinite.

2.1.2 String Operations
Let 𝑤 = 𝑎1𝑎2…𝑎𝑛 ∈ Σ∗, 𝑢, 𝑣 ∈ Σ∗ be strings.

• The reversal of 𝑤 is 𝑤𝑅 = 𝑎𝑛𝑎𝑛−1…𝑎1
• The concatenation of 𝑢 and 𝑣 is written 𝑢 ⋅ 𝑣 = 𝑢𝑣
• The 𝑘-th power of 𝑢 is 𝑢𝑘 = 𝑢𝑢𝑢…𝑢⎵⎵⎵

𝑘 times
• A substring of 𝑤 is some 𝑠 such that 𝑤 = 𝑥𝑠𝑧
• A prefix of 𝑤 is some 𝑝 such that 𝑤 = 𝑝𝑥

• A proper prefix would require 𝑥 ≠ 𝜀
• A suffix of 𝑤 is some 𝑠 such that 𝑤 = 𝑥𝑠

• A proper suffix would require 𝑥 ≠ 𝜀

2.1.3 String Encoding
We have a few motivations for defining encoding:

1. Every object should have some encoding
2. Encoding should be unique for each concept, viz. no to concepts map to the same encoding
3. Not every string has to be valid encoding for some concept

This corresponds to the properties of an injective function.

Definition 2.1.3

An encoding for 𝐴 ∈ Σ∗ is an injective function Enc : 𝐴 ↪ Σ∗. For 𝑎 ∈ 𝐴, write Enc(𝑎) = ⟨𝑎⟩
to denote the encoding for 𝑎.

A valid encoding 𝑤 is a sting 𝑤 ∈ Σ∗ such that ∃𝑎 ∈ 𝐴, 𝑤 = ⟨𝑎⟩

If an encoding function exists for 𝐴, we say 𝐴 is encodable.

Fact 2.1.2

Countability ⇔ Encodability³

So not all sets are encodable.⁴

³will come back to this
⁴for uncountable sets… we can still encode by approximation. An example is floating point for the uncountable ℝ.

10

String, Encoding, and Language

Example 2.1.2

Example encodings

1. 𝐴 = ℕ, 𝑎 = 36 ∈ ℕ
⟨36⟩ = “36” (decimal)

= “100100” (binary)
= “111111111111111111111111111111111111” (unary)

2. 𝐴 = ℤ, 𝑎 = −36 ∈ ℤ
⟨36⟩ = “36” (Σ = {−, 0, 1, …, 9})

= etc.

3. 𝐴 = ℕ × ℕ, 𝑎 = ⟨(3, 36)⟩ = ⟨3, 36⟩

Idea: use additional # symbol so ⟨3, 36⟩ = “3#36”
Then, this can get encoded into binary by encoding Σ∗ = {#, 0, …, 9}

4. 𝐴 = {All undirected graph}

Ideas:
• Adjacency matrix
• Listing vertices and edges

5. 𝐴 = {All python function}

Idea: just write the string

But does | Σ | matter? We can always encode all 𝑎 ∈ Σ, |Σ| = 𝑘 with 𝑡 = ⌈log2 𝑘⌉ bits using some
binary Σ′ with |Σ′| = 2.

Unary encoding is also possible, except it would be counting 1’s. Converting binary string to unary
string:

 0 -> 1
 1 -> 11
01 -> 111
10 -> 1111
etc.

So we can change Σ, and that changes our encoded length. Let 𝑛 = |Σ|, then 𝑎 ∈ Σ can be encoded
by length:

⎩
{
⎨
{
⎧𝑛 if in unary

⌊log2 𝑛⌋ + 1 if in binary
⌊log𝑘 𝑛⌋ + 1 if in base 𝑘

Observe that unary encoding is exponentially longer than other bases.

2.2 Language

11

String, Encoding, and Language

Definition 2.2.4

A language 𝐿 using alphabets from Σ is a subset of all possible finite-length strings 𝐿 ⊆ Σ∗.

The size of a language 𝐿 is simply |𝐿|.

Notation: write 𝖠𝖫𝖫 to denote the set of all languages 𝒫(Σ∗).

2.2.1 Operations on Languages
Let 𝐿, 𝐿1, 𝐿2 ⊆ Σ∗ be a language,

• Reversal: 𝐿𝑅 = {𝑤𝑅 ∈ Σ∗ | 𝑤 ∈ 𝐿}, in which 𝑤𝑅 is 𝑤 in reverse.
• Concatenation: 𝐿1𝐿2 = {𝑢𝑣 ∈ Σ∗ | 𝑢 ∈ 𝐿1 ∧ 𝑣 ∈ 𝐿2}.
• Power: for some 𝑛 ∈ ℕ, 𝐿𝑛 = {𝑢1𝑢2⋯𝑢𝑛 | 𝑢1..𝑛 ∈ 𝐿}.
• Star operation: 𝐿∗ = ⋃𝑛∈ℕ 𝐿𝑛. Note 𝜀 is always in 𝐿∗. Intuitively, this is 0-or-more concatenation.
• Plus operation: 𝐿+ = ⋃𝑛∈ℕ+ 𝐿𝑛. Intuitively, this is 1-or-more concatenation.

2.3 Computation as Function on Strings
For now, we work with a few assumptions:

• Determinism: computer produces same output given same input
• Input can be any finite-length string
• Computation is a finite process viz. it terminates
• There’s some output for every input (viz. perhaps some error string output for bad input)
• Output is finite-length string

Then, the computer acts like 𝑓 : Σ∗ → Σ∗. But this alone doesn’t tell us how to go from input to output.
Nonetheless, it models a form of computational problem. A computer solves the problem if its input-
output pairs matches that of 𝑓 .

Example 2.3.3

• Reverse problem 101100 ↦ 010011
• Sort problem 101100 ↦ 000111
• Decision problem 11111010 ↦ 0

More generally, computational problems can be thought of as 𝑓 : 𝐼 → 𝑆, in which 𝐼 is an instance of
input, and 𝑆 is the solution. But in TCS, we can usually encode both 𝐼 and 𝑆 with some string in Σ∗.

12

String, Encoding, and Language

Definition 2.3.5

A function problem is a problem with the form:

𝑓 : 𝐼 → 𝑆
⇣ ⇣
Enc Enc'
⇣ ⇣

𝑓 ′ : Σ∗ → Σ∗

A decision problem is a subset of function problems with the form

𝑓 : Σ∗ → {0, 1}

Note 2.3.1

For CTS purposes, string is the only type of data.

A special type of such problem is decision problem. It’s a restricted function with binary output, so
𝑓 : Σ∗ → {0, 1}. It’s a simpler mathematical object to work with, with a one-to-one correspondence
with language—simply the subset of inputs that map to true. That is, there is a bijection between 𝒫(Σ∗)
and the set of decision problems, namely:

𝑓(𝑥) = {1 if 𝑥 ∈ 𝐿
0 if 𝑥 ∉ 𝐿 for all 𝑥 ∈ Σ∗

Interestingly, it is almost always true that all functional problems have a corresponding decision prob-
lem with the same computability.

Example 2.3.4

Integer factorisation problem.

• The function problem: 𝑁 ∈ ℕ ↦ prime factors of 𝑁
• The decision problem: 𝑁, 𝑘 ∈ ℕ ↦ whether 𝑁 has factor 𝑥 s.t. 2 ≤ 𝑥 ≤ 𝑘

Given the latter, one can construct an algorithm for the former by:

for i in 2..n:
 if hasPrimeFactor(n, 2, i):
 record i as a prime factor
 n' divide n by i
 return {find all prime factors for n' and record them} union {i}

13

Deterministic Finite Automata

Chapter 3: Deterministic Finite Automata

We want a good model of computation, but let’s first see how far one can go with a simple and re-
stricted model of computation.

3.1 Terminology
To be able to define computation, we first build models for computation.

Definition 3.1.1

Some terminology

• Computational model — set of rules allowed for information processing
• Machine — an instance of a computational model. This could be a physical realisation or math-

ematical representation. We usually work with the latter in TCS.
• Universal Machine / Programme — a programme that can run many other programmes, such

as a laptop.

For now, Machine = Computer = Programme = Algorithm

For this chapter, we also assume:
1. There’s no universal machine, viz. each machine does one thing
2. We only consider decision problems

• the machine either accepts or rejects the input string
• focus only on functional problems with some corresponding decision problem

3.2 Defining Deterministic Finite Automata (DFA)
This is a restricted model of computation. Often in the real world we do have restrictions. At the same
time, designing a model that is as simple as possible can bring interesting properties.

Restrictions of DFA:
• Only one pass over the input string
• Very limited memory

Notation:
• Each node represents a state, usually indicated by 𝑞𝑖 for some 𝑖
• Double circles represent accept state, otherwise it’s a reject state
• Initial state 𝑞0 has arrow coming from nowhere
• Transition rules are arrow with alphabet corresponding to the transition
• To declutter, it’s acceptable to say that missing arrow all goes to reject, etc.

14

Deterministic Finite Automata

Example 3.2.1

q₀Start

q₁

q₂

q₃

0 1 0,11

00

1

3.2.1 Language and DFA

Definition 3.2.2

Let 𝑀 be a DFA and 𝐿 ⊆ Σ∗. We say that 𝑀 solves 𝐿 if:
• for all 𝑤 ∈ 𝐿, 𝑀 accepts 𝑤
• for all 𝑤 ∉ 𝐿, 𝑀 rejects 𝑤

We denote the language for which all strings a DFA 𝑀 accepts by 𝐿(𝑀)

15

Deterministic Finite Automata

Example 3.2.2

Example languages and DFAs

1. 𝐿(𝑀) = strings with even number of 1's

qeven
Start

qodd

0
1

0

1

2. 𝐿(𝑀) = strings with even number of characters

qeven
Start

qodd

0,1

0,1

3. 𝐿(𝑀) = strings that end in 0's and the empty string

qeven
Start

qodd

0
1

1

0

4. 𝐿(𝑀) = strings that end with 00

q₀Start q₁ q₂

0
1

0

1

0

1

Notice we can do various things like:
• Maybe build a DFA for some language
• Translate DFA into some programme in code
• Get the complement of the language by flipping accept and reject states

3.2.2 Formal Definition of DFA
We want a few properties:
• Every state need to have |Σ| transitions out of it
• There is no direction for states (so you can go back to a previously visited state)
• DFA needs to tell you the output for every input

16

Deterministic Finite Automata

Definition 3.2.3

A DFA is 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹), in which
• 𝑄 is the set of states
• Σ is the alphabet the DFA operates on
• 𝛿 is the transition function 𝛿 : 𝑄 × Σ → 𝑄. It takes the current state, the characters being read,

and outputs the next state.
• 𝑞0 is the start state
• 𝐹 ⊆ 𝑄 is the set of accept states

Let 𝑞 ∈ 𝑄, 𝑤 ∈ Σ∗, we write 𝛿∗(𝑞, 𝑤) to indicate the state after running on 𝑤, viz.

𝛿∗(𝑞, 𝑤) = 𝛿(…𝛿(𝛿(𝑞, 𝑤1), 𝑤2), …)

𝑀 accepts 𝑤 if 𝛿∗(𝑞0, 𝑤) ∈ 𝐹 , otherwise 𝑀 rejects 𝑤.

A good way to capture the input and output of 𝛿 is perhaps a table.

Definition 3.2.4

Computationpath for DFA Given a DFA 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) as previously defined, the compu-
tational path of 𝑀 on input 𝑤 ∈ Σ∗ is a sequence of states 𝑟0, 𝑟1, …, 𝑟𝑛 (𝑟𝑖 ∈ 𝑄) that the DFA
visits as it reads 𝑤. Note this means 𝑟0 = 𝑞0.

3.2.3 Applications of DFAs
DFA is always linear time, so if we can efficiently build a DFA that solves some decision problem, we
get 𝑂(𝑛) for free. An example is deciding whether 𝑤 contains some substring 𝑠.

3.3 Regular and Non-Regular Languages
Definition 3.3.5

We define regular languages 𝖱𝖤𝖦 to be the set of all languages that can be solved by some DFA.

regular languages 𝖱𝖤𝖦 ⊆ all languages 𝖠𝖫𝖫

But is it true in the other direction? Probably not. DFAs have limited memory and only scans in one
direction (viz. forgets what it reads), but some language may require more memory to solve. We want
to find the simplest counterexample to show that there exists non-regular language. One idea is to
make use of the fact that DFAs are bad at counting—because |𝑄| is finite, they can only keep track of
|𝑄| distinct situations.

Key limitations of DFAs:
• Finite number of states → limited memory
• Only reads input in one direction → can’t go back to check something if not in memory

17

Deterministic Finite Automata

Strategy 3.3.1

Proving a language 𝐿 is not regular using the Pigeonhole Principle (PHP).

1. Assume that the language is regular and there is a DFA with 𝑘 ∈ ℕ+ states that solves 𝐿.
2. Come up with a fooling pigeon set 𝑃 such that |𝑃 | > 𝑘
3. By PHP, ∃𝑥, 𝑦 ∈ 𝑃 with 𝑥 ≠ 𝑦 must end up at the same state in the DFA, so 𝑥𝑧 and 𝑦𝑧 for some

𝑧 ∈ Σ∗ end up in the same state
4. Pick 𝑧 such that 𝑥𝑧 ∈ 𝐹 xor 𝑦𝑧 ∈ 𝐹 . Contradiction.

Note this strategy also works if one wants to prove a lower bound on the number of states a DFA
needs to solve a certain language—assume a DFA with fewer states solves it, and derive a contra-
diction.

Theorem 3.3.1

𝐿 = {0𝑛1𝑛 | 𝑛 ∈ ℕ} is not regular.

Proof.

AFSOC 𝐿 is regular and there exists DFA 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) that solves 𝐿 with |𝑄| = 𝑘, 𝑘 ∈ ℕ+.

Consider 𝑃 = {0𝑖 | 0 ≤ 𝑖 < 𝑘 + 1}. Then by PHP:

∃𝑥 = 0𝑛, 𝑦 = 0𝑚 ∈ 𝑃 , 𝑥 ≠ 𝑦, 𝛿∗(𝑞0, 𝑥) = 𝛿∗(𝑞0, 𝑦)

But then let 𝑧 = 1𝑛. So 𝑥𝑧 ∈ 𝐿 but 𝑦𝑧 ∉ 𝐿. But 𝛿∗(𝑞0, 𝑥𝑧) = 𝛿∗(𝑞0, 𝑦𝑧). Contradiction.

□

3.3.1 Closure Properties of Regular Languages
Regular languages are closed under:

• Complement
• Union
• Intersection
• Concatenation
• Star operation

For the proofs below, let 𝑀1 = (𝑄1, Σ, 𝛿1, 𝑞1
0 , 𝐹 1) solve 𝐿1 and 𝑀2 = (𝑄2, Σ, 𝛿2, 𝑞2

0 , 𝐹 2) solve 𝐿2.

Theorem 3.3.2

Regular languages are closed under complement

𝐿1 ⊆ Σ∗ is regular ⇒ 𝐿1 = Σ∗ ∖ 𝐿1 is regular

Proof.

𝑀 ′ = (𝑄1, Σ, 𝛿1, 𝑞1
0 , 𝑄1 ∖ 𝐹 1) solves 𝐿1. □

18

Deterministic Finite Automata

Theorem 3.3.3

Regular languages are closed under union

𝐿1, 𝐿2 ⊆ Σ∗ are regular ⇒ 𝐿1 ∪ 𝐿2 is regular

Proof idea: construct new DFA with state 𝑄′ = 𝑄1 × 𝑄2, initial state 𝑞0′ = (𝑞1
0 , 𝑞2

0) step
both DFAs and accept if one of the final states is accept for one of the DFAs viz.
𝐹 ′ = {(𝑞1, 𝑞2) | 𝑞1 ∈ 𝐹 1 ∨ 𝑞2 ∈ 𝐹 2}.

Theorem 3.3.4

Regular languages are closed under intersection

𝐿1, 𝐿2 ⊆ Σ∗ are regular ⇒ 𝐿1 ∩ 𝐿2 is regular

Proof idea 1: Write 𝐿1 ∩ 𝐿2 as 𝐿1 ∪ 𝐿2

Proof idea 2: very similar to union, but with 𝐹 ′ = {(𝑞1, 𝑞2) | 𝑞1 ∈ 𝐹 1 ∧ 𝑞2 ∈ 𝐹 2}.

Theorem 3.3.5

Regular languages are closed under concatination

𝐿1, 𝐿2 ⊆ Σ∗ are regular ⇒ 𝐿1𝐿2 is regular

Proof.

Define 𝑀 ′ by:

𝑄′ = 𝑄1 × 𝒫(𝑄2)
Σ′ = Σ

𝑞0′ = {
(𝑞1

0 , ∅) if 𝑞1
0 ∉ 𝐹 1

(𝑞1
0 , {𝑞2

0}) if 𝑞1
0 ∈ 𝐹 1

𝛿′(𝑎, 𝐵) = {
(𝛿1(𝑎, 𝜎), {𝛿2(𝑏, 𝜎) | 𝑏 ∈ 𝐵}) if 𝛿1(𝑎, 𝜎) ∉ 𝐹 1

(𝛿1(𝑎, 𝜎), {𝛿2(𝑏, 𝜎) | 𝑏 ∈ 𝐵} ∪ {𝑞2
0}) if 𝛿1(𝑎, 𝜎) ∈ 𝐹 1

𝐹 ′ = {(𝑎, 𝐵) ∈ 𝑄′ | ∃𝑏 ∈ 𝐵, 𝑏 ∈ 𝐹 2}

□

Definition 3.3.6

Notice it’s useful to have a set of states and step the entire set, so we define a generalised tran-
sition function 𝛿𝒫 : 𝒫(𝑄) × Σ → 𝒫(𝑄) by:

𝛿𝒫(𝑆, 𝜎) = {𝛿(𝑞, 𝜎) | 𝑞 ∈ 𝑆}

19

Deterministic Finite Automata

Theorem 3.3.6

Regular languages are closed under star operation

𝐿1 ⊆ Σ∗ are regular ⇒ 𝐿∗
1 is regular

Proof.

We can solve 𝐿+
1 by constructing 𝑀 ′:

𝑄′ = 𝒫(𝑄1)
Σ′ = Σ
𝑞0′ = {𝑞1

0}

𝛿′(𝑆) = {
𝛿1
𝒫(𝑆, 𝜎) ∪ {𝑞1

0} if 𝛿1
𝒫(𝑞, 𝜎) ∩ 𝐹 1 ≠ ∅

𝛿1
𝒫(𝑆, 𝜎) else

𝐹 ′ = {𝑆 ⊆ 𝑄1 | 𝑆 ∩ 𝐹 1 ≠ ∅}

Then we can use closure under union to construction 𝑀″ for 𝐿+
1 ∪ {𝜀} □

3.3.2 Recursive Definition of Regular Language
It turns out the definition simple language is equivalent to that of regular language. Namely:

Theorem 3.3.7

A regular language can be recursively defined as:
• ∅ is regular
• {𝜎} is regular for all 𝜎 ∈ Σ
• If 𝐿1, 𝐿2 are regular, then 𝐿1 ∪ 𝐿2 is regular
• If 𝐿1, 𝐿2 are regular, then 𝐿1𝐿2 is regular
• If 𝐿1 is regular, then 𝐿∗

1 is regular

Proof omitted.

20

Turing Machines (TMs)

Chapter 4: Turing Machines (TMs)

DFA with tape — the model for computation!

4.1 Preamble
Recall what we want from a model of computation:
1. As simple as possible
2. As general as possible

Observations:
1. Computational devices need to be a finite object. Finite algorithms need to solve arbitrary-length

input.
2. It has unlimited memory. That is, it can access more working memory if needed.

An algorithm is a finite answer to infinite number of questions

4.1.1 Coming Up with TMs (Modern Perspective)

Ponder 4.1.1

Attempt 1: Define computable by what Python can compute!

Problems:
• But what is Python? 100 pages of definition?
• Why Python? What’s special about Python among the other programming languages

This is general enough, but not simple

We want a totally minimal (TM) programming language

Ponder 4.1.2

Attempt 2: Upgrade DFA + Tape — enable write to tape and allow moving around tape.

STATE 0:
 switch sigma:
 case 'a':
 write 'b';
 move LEFT;
 goto STATE 2;
 case 'b':
 ...
 ...
...

That seems to work!

To represent a TM, we can draw state diagrams similar to those for DFAs. Just put the character to
write and the direction to move on the transition.

21

Turing Machines (TMs)

4.1.2 Coming Up with TMs (Turing’s Perspective)

Ponder 4.1.3

Recall that in Hilbert’s time, mathematicians were trying to formalise what it means to have a
finite procedure, such as in the Entscheidungsproblem. Computers back then were humans, and so
a finite procedure would be instructions given to humans so that they could write proofs mechan-
ically.

But then we needed to define what the instruction looks like and what instructions a human can
follow and execute.

A TM, then, must capture human computers’ workflow. Observe that a human computer reads and
writes symbols on paper.

• Human has finite mental states, thus finite number of states in a TM.
• Human computers are deterministic, so kind of like DFAs with deterministic state changes.
• Human knows finite number of symbols, and they can have a set of working symbols that is a su-

perset of the input symbols.
• Human can work with papers with square cells and put one symbol in one cell.
• Human can always grab more papers.
• Human can work by reading/writing at one location at a time. (WLOG, if someone really needs to

read/write more cells at a time, we can just have larger cells with a larger set of composite symbols)
• There is nothing special about 2D papers, so moving Left/Right is sufficient for computation.

So then if we define a TM to model a computer with finite number of states, finite number of sym-
bols, and an infinite tape, they can perform equivalent computation as a human computer. Simple and
general!

4.1.3 Key Differences Between DFAs and TMs
DFAs
• Multiple accept/reject states
• Halt at string end
• Always terminates
• Finite cell access

TMs
• One accept state, one reject state
• Halt on accept/reject
• May loop forever
• Can read/write infinite number of cells

4.2 Formal Definition of TMs

22

Turing Machines (TMs)

Definition 4.2.1

A turing machine can be described by a mighty 7-tuple 𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑞acc, 𝑞rej)

• 𝑄 is the set of states
• Σ is the set of input characters, such that ⊔ ∉ Σ
• Γ is the set of tape characters, satisfying Σ ⊂ Γ ∧ ⊔ ∈ Γ
• 𝛿 : (𝑄 ∖ {𝑞acc, 𝑞rej}) × Γ → 𝑄 × Γ × {𝐿, 𝑅} the transition function
• 𝑞0 ∈ 𝑄 is the initial state
• 𝑞acc ∈ 𝑄 is the accept state
• 𝑞rej ∈ 𝑄 is the reject state, it must be that 𝑞rej ≠ 𝑞acc

The TM then operates on an infinite tape, with infinite blank symbols surrounding the input string
and the tape head initially at the start of the input string.

𝑀 can then be thought of as a function Σ∗ → {0, 1, ∞}, with 0 being reject, 1 being accept, and
∞ being loop forever.

Note 4.2.1

One can also set up a TM with a tape that’s infinite only in one direction, but this does not make
the TM any less powerful.

Definition 4.2.2

Configuration of a TM

A configuration of a TM consists of:
1. The content on the tape
2. Its state
2. The location of the tape head

We can specify the configuration formally by writing down 𝑢𝑞𝑣 ∈ (Γ ∪ 𝑄)∗ where 𝑢, 𝑣 ∈ Γ∗ and
𝑞 ∈ 𝑄. The convention is that the tape head is at the first character of 𝑣, and the state is 𝑞. We say
that a configuration is accepting if 𝑞 = 𝑞acc and rejecting if 𝑞 = 𝑞rej.

Definition 4.2.3

Language of a TM

𝐿(𝑀) = {𝑤 ∈ Σ∗ | 𝑀 accepts 𝑤}

Note that 𝑀 may loop forever for some input, but 𝐿(𝑀) only contains those that 𝑀 accepts.

4.3 Universality of Computation
The idea is that a TM can perform any computation we want just with a finite set of instructions and
an infinite scratchpad.

4.3.1 TM Subroutines, Tricks, and Description
• Move Left/Right until hitting ⊔
• Shift entire input by one cell to Left/Right

23

Turing Machines (TMs)

• Convert ⊔ 𝑥1𝑥2𝑥3 ⊔ to ⊔ 𝑥1 ⊔ 𝑥2 ⊔ 𝑥3 ⊔
• Simulate Γ with {0, 1, ⊔} viz. alphabet reduction
• Mark cells with Γ′ = {0, 1, 0⦁, 1⦁, ⊔}
• Copy paste tape segment
• Simulate 2 TMs on the same tape
• Implement some data structure
• Simulate RAM by reading address and moving
• …
• Simulate assembly

So a Turing Machine can simulate all our programmes written in other programming lan-
guages. Therefore, to describe a TM, it is sometimes sufficient to describe it at a higher level, knowing
that it can compile down to a 7-tuple describing an actual TM.

Levels of description:

• Low - state diagram, 7-tuple
• Mid - movement, behaviour
• High - pseudocode

4.3.2 Universal Machines

Definition 4.3.4

A universal machine is a machine that can simulate any machine.

It follows that Turing’s TM can simulate any TM, just like how human takes instructions and input, a
TM can take the blueprint of another TM, some input, and simulate the input string on the input TM.

An important realisaion is that code is data, so any algorithm/programme can be encoded and fed
into some other machine. The good thing is that we get universal machines, the maybe not so good
thing is that we now have to deal with self reference.

4.4 The Church-Turing Thesis
Is computation equivalent to any physical process?

Definition 4.4.5

The Church-Turing Thesis states that any computation allowed by the laws of physics can be
done by a TM.

Definition 4.4.6

The Church-Turing Thesis+ states that any computational problem solvable by physical process
is solvable by a probabilistic TM.

Definition 4.4.7

The Church-Turing Thesis++ states that any computational problem efficiently solvable by phys-
ical process can be efficiently solved by a Quantum TM.

24

Turing Machines (TMs)

Note that the Church-Turing Thesis is not a theorem, but something we believe to be true. At least we
don’t know of any counterexample yet.

4.5 Decidability
Definition 4.5.8

A decidable language is a language a TM can solve. Let 𝐿 ⊆ Σ∗, 𝐿 is dicidable if there exists 𝑀
a TM such that:
• ∀𝑤 ∈ 𝐿, 𝑀 halts and accepts 𝑤
• ∀𝑤 ∉ 𝐿, 𝑀 halts and rejects 𝑤

In which case we call 𝑀 a decider for 𝐿.

We write 𝘙 to indicate the set of all decidable languages.

Definition 4.5.9

A decider TM is a TM that never loops.

Example 4.5.1

Deciding isPrime = {⟨𝑛⟩ | 𝑛 is a prime}

One can simply write some code to do it:

Proof.

def M(n: int):
 if n < 2:
 return 0
 for i in [2, 3, ..., n - 1]:
 if n % i == 0:
 return 0
 return 1

Since we can write code to solve it, we can compile it to a TM that solves it, so it is decidable.

□

25

Turing Machines (TMs)

Example 4.5.2

Deciding behaviour of DFAs

• ACCEPTSDFA = {⟨𝐷 : DFA, 𝑥 : str⟩ | 𝐷 accepts 𝑥} is decidable because we can just simu-
late the DFA and decide

• SELF-ACCEPTSDFA = {⟨𝐷 : DFA⟩ | 𝐷 accepts ⟨𝐷⟩} decidable, same as above
• SATDFA = {⟨𝐷 : DFA⟩ | 𝐷 is satisfiable} decidable, we can do a graph search to see if any of

the accept states are reachable
• NEQDFA = {⟨𝐷1 : DFA, 𝐷2 : DFA⟩ | 𝐿(𝐷1) ≠ 𝐿(𝐷2)} decidable… but a bit more tricky.

Proving that NEQDFA is decidable by reduction.

Proof. First, we observe that this is equivalent to deciding if (𝐿(𝐷1) ∪ 𝐿(𝐷2)) ∖ (𝐿(𝐷1) ∩ 𝐿(𝐷2))
is empty.

But we can rewrite that as (𝐿(𝐷1) ∩ 𝐿(𝐷2)) ∪ (𝐿(𝐷1) ∩ 𝐿(𝐷2)). By closure properties of reg-
ular languages, we can build a DFA to solve that using 𝐷1 and 𝐷2, and we can use a decider for
SATDFA to figure out if that region is empty.

We just reduced NEQDFA to SATDFA. We write NEQDFA ≤ SATDFA.

□

4.5.1 Closure Properties of Decidable Languages

Theorem 4.5.1

Decidable language is closed under complement.

Proof.

Let 𝐿 be a decidable language. Let 𝑀 de a decider for 𝐿. We can build a decider for 𝐿 by:

fn x => (case M x of 1 => 0 | 0 => 1)

□

Theorem 4.5.2

Decidable language is closed under union.

Proof. Let 𝐿1, 𝐿2 be decidable languages. Let M1, M2 be their deciders. We can build a decider for
𝐿1 ∪ 𝐿2 by:

fn x => (case M1 x of 1 => 1 | 0 => M2 x)

□

26

Turing Machines (TMs)

Theorem 4.5.3

Decidable language is closed under intersection.

Proof. Let 𝐿1, 𝐿2 be decidable languages. Let M1, M2 be their deciders. We can build a decider for
𝐿1 ∪ 𝐿2 by:

fn x => (case (M1 x, M2 x) of (1, 1) => 1 | _ => 0)

□

4.5.2 Semi-Decidability
Decidability requires that the decider always outputs 0 or 1, but we may relax the requirement and
find that some languages are only semi-decidable.

Definition 4.5.10

A TM 𝑀 semi-decides 𝐿 if:

∀𝑤 ∈ Σ∗, 𝑤 ∈ 𝐿 ⟺ 𝑀(𝑤) = 1

viz.
• 𝑤 ∈ 𝐿 ⇒ 𝑀(𝑤) = 1
• 𝑤 ∉ 𝐿 ⇒ 𝑀(𝑤) ∈ {0, ∞}

Which means our TM always says yes if the input is in the language, but may say no xor loop
forever if it’s not.

A language is semi-decidable if there exists a semi-decider for it.

We write 𝖱𝖤 for the set of all semidecidable languages.

Corollary 4.5.1

All decidable languages are semi-decidable.

Corollary 4.5.2

So 𝖱𝖤𝖦 ⊆ 𝘙 ⊆ 𝖱𝖤 ⊆ 𝖠𝖫𝖫.

Theorem 4.5.4

A language 𝐿 is decidable iff both 𝐿 and 𝐿 are semi-decidable.

Proof idea: for the forward direction, use complement closure property. For the other direction,
construct a decider using the two semi-deciders (hint: step each TM in incremental number of steps
until one of them halts).

27

Limits of Computation

Chapter 5: Limits of Computation

Galileo
𝑆 = {0, 1, 4, …}
So |ℕ| > |𝑆|?
𝑅 = {

√
0,

√
1,

√
4, …}

but…
|𝑆| = |𝑆𝑅| = |ℕ|
Maybe size compari-
son on ∞ is unde-
fined.

Gauss
“The notion of a com-
pleted infinity doesn’t
belong in mathemat-
ics”

Cantor
Infinity as a first class
citizen
(To Galileo: so close,
why not say they are
equal?)

Turing
TM is finite, that is a
limit to computation

Gödel
Limit to mathematical
reasoning

5.1 Limits of Counting

5.1.1 Cantor and Infinite Sets
To deal with size comparison on infinite sets, Cantor proposed to define relative cardinality using in-
jections.

Definition 5.1.1

Let 𝐴 and 𝐵 be sets, define⁵:

|𝐴| = |𝐵| ⟺ ∃ bijection 𝑓 : 𝐴 ↔ 𝐵
|𝐴| ≤ |𝐵| ⟺ ∃ injection 𝑓 : 𝐴 ↪ 𝐵 ⟺ ∃ surjection 𝑔 : 𝐵 ↠ 𝐴
|𝐴| ≥ |𝐵| ⟺ ∃ surjection 𝑓 : 𝐴 ↠ 𝐵 ⟺ ∃ injection 𝑔 : 𝐵 ↪ 𝐴

⁵Hmmm something may break if ∅ is involved, but in that case… meh whatever

Notice we don’t need to define |𝐴| nor |𝐵| in isolation to define a partial order on |𝐴| and |𝐵|. Also
notice that cardinality comparison defined this way forms a valid partial order relation (reflexive, not
symmetric, antisymmetric, transitive).

Corollary 5.1.1

If 𝐴 ⊆ 𝐵, then |𝐴| ≤ |𝐵|. We can just inject by identity function.

28

Limits of Computation

Theorem 5.1.1

|Σ∗| = |ℕ|

Proof.

Define 𝑓 : Σ∗ ↠ ℕ by 𝑓(𝑠) = |𝑠|. That’s surjective so |Σ∗| ≥ |ℕ|.

Now list words in Σ∗ by length-lexicographical order, so every word eventually appears. One can
then define surjection 𝑔 : ℕ ↠ Σ∗ by 𝑔(𝑛) = 𝑛-th item in the list. That’s surjective so |Σ∗| ≤ |ℕ|.

□

Theorem 5.1.2

If 𝑆 is infinite and |𝑆| ≤ |ℕ|, then |𝑆| = |ℕ|.

Proof.

Haha whatever. Fill this in later⁶.
╮(╯▽╰)╭

□

⁶3 months later: what the heck is this?

5.1.2 Countable Sets
It seems then, there are three types of cardinality:
1. Finite
2. Infinite and same as |ℕ|
3. Infinite but greater than |ℕ|

Since we can enumerate both 1 and 2, we usually call them countable, so the remaining 3 is uncount-
able.

Definition 5.1.2

• 𝐴 is countable if |𝐴| ≤ |ℕ|
• 𝐴 is countably infinite if it’s countable and infinite
• 𝐴 is uncountable if |𝐴| > |ℕ|

But recall that |ℕ| = |Σ∗|, we can redefine countability in terms of Σ∗. But then recall that some set is
encodable if it can be injected into Σ∗. Voila countability is the same as encodability!

Definition 5.1.3

• 𝐴 is countable if 𝐴 is encodable viz. ∃ Enc : 𝐴 ↪ Σ∗

• 𝐴 is uncountable if 𝐴 is not encodable viz. ∄ Enc : 𝐴 ↪ Σ∗

29

Limits of Computation

Strategy 5.1.1

Countability heuristics

1. If one can list the elements of a set 𝐴, then there is some injection into ℕ so it’s probably count-
able.

2. If one can write down each 𝑎 ∈ 𝐴 in a unique way using some 𝑤 ∈ Σ∗, then it’s probably en-
codable and thus countable.

Example 5.1.1

Known countable sets
• ℕ
• ℤ
• ℤ × ℤ — can list in a spiral shape on the ℤ × ℤ plane, but probably easier encode tuples by

something like ⟨(14, 25)⟩ = 14#25 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, #}∗

• ℚ — likewise, use Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, /}

5.1.3 Diagonalisation
Motivation: given a set ℱ, can we construct something that’s not in the set? If so, perhaps we can also
prove some set is not countable.

The ℱ of interest could be:
• The set of all decidable languages
• The set of all languages decidable in 𝑂(𝑛2)
• The set of all provable math statements

For now, we try to treat ℱ as a set of functions, and many sets can actually be represented as functions.

Strategy 5.1.2

Representing sets as functions

• Take set 𝐴. We can have that 𝑓(𝑎) ⟺ 𝑎 ∈ 𝐴
• Let 𝑟 ∈ [0, 1), we can represent 𝑟 = 0.𝑓(0)𝑓(1)𝑓(2)…

Lemma 5.1.1

Diagonalisation Lemma

Let there be a set of functions ℱ = {𝑓 : 𝑋 → 𝑌 }. If |𝑋| ≥ |ℱ| and |𝑌 | ≥ 2, we can construct
𝑓𝐷 : 𝑋 → 𝑌 such that 𝑓𝐷 ∉ ℱ.

Strategy 5.1.3

Diagonalising against ℱ to get a diagonal element 𝑓𝐷 by:

1. Define some injection 𝜙 : ℱ → 𝑋
2. Define 𝑓𝐷 such that ∀𝑓 ∈ ℱ, 𝑓𝐷(𝜙(𝑓)) ≠ 𝑓(𝜙(𝑓))

30

Limits of Computation

Corollary 5.1.2

Let ℱ(𝑋) denote the set of all functions 𝑓 : 𝑋 → 𝑌 (|𝑌 | ≥ 2).

Then |𝑋| < |ℱ| because otherwise we can diagonalise and get some 𝑓𝐷 that’s not in ℱ(𝑋)… but
we said ℱ is the set of all functions 𝑓 : 𝑋 → 𝑌 .

So then |ℕ| < |ℱ(ℕ)| so ℱ(ℕ) is uncountable.

Likewise ℱ(Σ∗) would be uncountable. Pick 𝑌 = {0, 1}, then the set of all decision problems is
uncountable.

Theorem 5.1.3

Cantor’s Theorem

For all set 𝐴, |𝐴| < |𝒫(𝐴)|.

Proof.

Consider ℱ(𝐴) = {𝑓 : 𝐴 → {0, 1}}. Then each 𝑓 ∈ ℱ is a characteristic function for some subset
of 𝐴. But meanwhile |𝐴| < |ℱ(𝐴)| = |𝒫(𝐴)|.

□
But… but… the set of all Turing Machines is countable and the set of all decision problems is uncount-
able… we may be onto something… there must be undecidable problems!

Observe that many undecidable problems are not encodable, we may want to eventually find an ex-
plicit, encodable undecidable problem. Those are the more interesting finitely decidable problems.

5.1.4 Uncountable Sets

Definition 5.1.4

Σ∞ is the set of all infinite strings over some finite alphabet Σ

Theorem 5.1.4

{0, 1}∞ is uncountable

To prove this, one way is to establish some correspondence between {0, 1}∞ and 𝒫(ℕ).

Strategy 5.1.4

Strategies to prove a set 𝐴 is uncountable

1. AFSOC 𝐴 is countable, diagonalise against 𝐴 and derive a contradiction.
2. Inject a known uncountable set into 𝐴, or surject 𝐴 onto a known uncountable set.

5.2 Limits of Computation

31

Limits of Computation

Ponder 5.2.1

Consider the following languages, are they decidable?

• ACCTM = {⟨𝑀 : TM, 𝑥 : str⟩ | 𝑀(𝑥) = 1}
• SELF-ACCTM = {⟨𝑀 : TM⟩ | 𝑀(⟨𝑀⟩) = 1}
• HALTSTM = {⟨𝑀 : TM, 𝑥 : str⟩ | 𝑀(𝑥) ∈ {0, 1}}
• SATTM = {⟨𝑀 : TM⟩ | 𝐿(𝑀) ≠ ∅}
• NEQTM = {⟨𝑀1 : TM, 𝑀2 : TM⟩ | 𝐿(𝑀1) ≠ 𝐿(𝑀2)}

5.2.1 Diagonalising Turing Machines
Let ℱ be the set of all TMs so ℱ = {⟨𝑀⟩ | 𝑀 : Σ∗ → {0, 1, ∞}}. We need |Σ∗| ≥ |ℱ| to diagonalise,
that’s indeed true because TMs are encodable.

now we define 𝑓𝐷 by:

∀𝑀𝑖 ∈ ℱ, 𝑓𝐷(⟨𝑀𝑖⟩) =

⎩
{
⎨
{
⎧0 if 𝑀𝑖(⟨𝑀𝑖⟩) = 1

1 if 𝑀𝑖(⟨𝑀𝑖⟩) = 0
1 if 𝑀𝑖(⟨𝑀𝑖⟩) = ∞

∀𝑥 ∈ Σ∗ ∖ ℱ, 𝑓𝐷(𝑥) = 1 (whatever)

So we just constructed 𝑓𝐷 corresponding to the language

NOT-SELF-ACCTM = {⟨𝑀 : TM⟩ | 𝑀(⟨𝑀⟩) ≠ 1}

Theorem 5.2.5

NOT-SELF-ACCTM is undecidable.

Proof.

As above □

5.2.2 Proving Undecidability by Reduction

Theorem 5.2.6

SELF-ACCTM is undecidable.

Proof.

AFSOC suppose it is, then we can flip the output of a decider to solve NOT-SELF-ACCTM. Con-
tradiction. □

Theorem 5.2.7

ACCTM is undecidable.

Proof.

AFSOC suppose it is, then we can use it to decide SELF-ACCTM by passing in the encoding of the
TM of interest. Contradiction. □

32

Limits of Computation

Theorem 5.2.8

HALTTM is undecidable.

Proof.

AFSOC suppose it is with some decider M_H, then we can use it to decide ACCTM by

fn (M: TM, x: str) => (case M_H (M, x) of 0 => 0 | _ => M x)

Contradiction. □

Definition 5.2.5

Decision problem 𝐴 reduces to decision problem 𝐵 if, assuming there exists a decider TM 𝑀𝐵 for
𝐵, we can construct a decider 𝑀𝐴 for 𝐴. We write 𝐴 ≤ 𝐵 to denote “𝐴 reduces to 𝐵”.

Corollary 5.2.3

Suppose 𝐴 ≤ 𝐵, then:
• 𝐵 decidable ⇒ 𝐴 decidable
• 𝐴 undecidable ⇒ 𝐵 undecidable

Example 5.2.2

Prove that SATTM is undecidable.

Proof.

AFSOC there exists TM M_S that decides SATTM. Now define M_HALTS by:

fun M_HALTS (M: TM, x: str) =
 let
 fun M' y = let val _ = M x in 1 end
 in
 M_S M'
 end

If M halts on x, M' accepts any y, so M_S accepts so M_HALTS accepts.

If M does not halt on x, M' never accepts anything on any input, so M_S rejects so M_HALTS rejects.

We decided the undecidable. Contradiction.

□
Note the idea of reduction can be formalised as Turing reduction. Which involves Oracle TMs etc., but
not having that does not stop us from proving undecidability.

5.2.3 More Undecidable Languages

33

Limits of Computation

Theorem 5.2.9

SATTM = {⟨𝑀 : TM⟩ | 𝐿(𝑀) ≠ ∅} is undecidable

Proof.

Suppose M_SAT decides SATTM, we can decide ACCEPTSTM by:

fun M_ACCEPTS (M: TM, x: str) =
 let
 fun M' y = M x
 in
 M_SAT M'
 end

□

Theorem 5.2.10

NEQTM = {⟨𝑀1 : TM, 𝑀2 : TM⟩ | 𝐿(𝑀1) ≠ 𝐿(𝑀2)} is undecidable

Proof.

Suppose M_NEQ decides NEQTM, we can decide SATTM by:

fun M_SAT (M: TM) =
 let
 fun M_EMPTY y = 0
 in
 M_NEQ (M_EMPTY, M)
 end

□

34

Limits of Computation

Theorem 5.2.11

FINITETM = {⟨𝑀 : TM⟩ | 𝐿(𝑀) is finite} is undecidable.

Proof.

Suppose M_FINITE decides FINITETM, we can decide HALTTM by:

fun M_HALT (M: TM, x: str) =
 let
 fun M' y =
 if y = "meh" then 1
 else let
 val _ = M x
 in
 1
 end
 in
 (case M_FINITE M' of 1 => 0 | 0 => 1)
 end

□

Theorem 5.2.12

SATTM ≤ HALTSTM.

Idea: build a TM that, in increasing number of maximum steps and input length, tries all strings
within the length bound. Deciding if it halts tells us whether or not it’s satisfyable.

5.2.4 Consequences of Undecidability
• No way to write general programmes that verifies other programmes
• No way to decide if bruteforce search for counterexample to math conjecture halts
• By Church-Turing Thesis, … physical universe can’t compute everything

Other undecidable problems that don’t deal with TMs:
• Entscheidungsproblem
• Hilbert’s 10th problem
• Mortal matrices: is there a way to multiply 21 × 21 integer matrices 𝑈 and 𝑉 some number of times

in some order to get the zero matrix?

5.2.5 Non-Semi-Decidable Decidable Languages

Theorem 5.2.13

If 𝐿 es semi-decidable and undecidable ⇒ 𝐿 is not semi-decidable.

Idea: otherwise 𝐿 would be decidable.

Some non-semi-decidable languages to know. Notice we know the complement of these are semi-de-
cidable but not decidable.
• SELF-ACCEPTTM

35

Limits of Computation

• ACCEPTSTM
• HALTSTM

5.3 Limits of Human Reasoning: Gödel’s Incompleteness
Theorems
What we wanted: precise model for axioms, dedunction rules, mathematical, statements, and proofs

• Axioms – obvious truth
• Statement – well formed, has truth value
• Dedunction rule – how to go from known truth to new truth
• Proof – chain of deduction from axioms to statement

The hope is that truth ≡ provable… but this isn’t how things turn out.

5.3.1 FORM Essentials
GORM can be viewed as computation. We at least want the verifier to be decidable, as we always want
to know if a proof is valid or not.

statement 𝑆 → prover → SOME proof 𝑃 / NONE

statement 𝑆 → decider prover → accept if provable, else reject

(statement 𝑆, proof 𝑃) → verifier → accept if proof works, else reject

Formally, we want:

• ∀ valid statement 𝑆 in GORM, ∃⟨𝑆⟩ ∈ Σ∗ in FORM
• ∀ proof 𝑃 in GORM, ∃⟨𝑃⟩ ∈ Σ∗ in FORM
• ∃ verifier TM 𝑉 such that 𝑉 (⟨𝑆⟩, ⟨𝑃 ⟩) accepts ⇔ 𝑃 proves 𝑆
• 𝑆 provable ⇔ ∃𝑤 ∈ Σ∗, 𝑉 (⟨𝑆⟩, 𝑤) accepts

This means, we can build inefficient, semidecider provers that search through Σ∗ for proof.

prover (<S>):
 for all strings w in length-lex order:
 if V(<S>, w) accepts, return w

isProvable(<S>):
 for all strings w in length-lex order:
 if V(<S>, w) accepts, accept
 if V(<negation S>, w) accepts, reject

To proceed, we need the GORM-to-ZFC (Zermelo-Fraenkle-Choice) thesis, which says that the ZFC
axiomatic system is a right system for GORM. All proofs and statements in GORM compile to ZFC,
much like algorithms compile to TMs.

5.3.2 Proving Things About FORM
Things we want:

• Consistency – at most one of 𝑆, ¬𝑆 provable
• Soundness – 𝑆 provable ⇒ 𝑆 is true (this implies 𝑆 false ⇒ 𝑆 not provable and consistency)
• Completeness – ∀𝑆, at least one of 𝑆, ¬𝑆 provable

36

Limits of Computation

Then soundness would imply isProvable is always correct (not necessarily terminates), and complete-
ness implies isProvable always halts.

So

consistency ∧ completeness ⇒ exactly one of 𝑆, ¬𝑆 provable
soundness ∧ completeness ⇒ truth ≡ provability

5.3.3 Incompleteness Theorems
WTS: soundness ∧ completeness ⇒ incomputable things are computable

Set up:

• Assume ZFC captures GORM
• Assume verifier exists
• Say statement 𝑆 is independent if neigher 𝑆 nor ¬𝑆 provable. Notice the existence of independent

statement implies incompleteness

Theorem 5.3.14

0th incompleteness theorem⁷: maybe we can’t reason about all of mathematics.

It makes sense that the set of all mathematical concepts is infinite, but only so much is finitely
describable. Mathematicians work with those that are finitely describable, so maybe we can’t work
with a lot of math.

⁷really just a heuristic

Theorem 5.3.15

1st incompleteness theorem (soundness)

AFSOC ZFC is sound and complete. So isProvable is a decider, so isProvable ≡ isTrue. Now we
can decide HALT by:

M_HALTS(M, x) = isTrue "M(x) halts"

Then ZFC cannot be both sound and complete. So ZFC soundness ⇒ incompleteness.

37

Limits of Computation

Theorem 5.3.16

1st incompleteness theorem (soundness with explicitly unprovable 𝑆)

Consider NOT-SELF-ACCEPT (NSA):

M_NSA(M) = isTrue "M does not self-accept"

Since NSA is undecidable, M_NSA must not decide it, so there exists some TM such that
isTrue "M does not self-accept" doesn’t return right answer, in which case the statement “M
does not self-accept” is independent.

We can diagonalise to get such 𝑀 , and it turns out to be 𝑀NSA. If we feed 𝑆 = “⟨𝑀NSA⟩ does not
self-accept” into 𝑀NSA, it doesn’t give the correct answer. We found an 𝑆 that’s independent.

Theorem 5.3.17

1st incompleteness theorem (consistency)

Maybe try relaxing soundness to consistency.

Let 𝐼 = “⟨𝑀NSA⟩ does not self-accept”

But then if ZFC is consistent, 𝐼 is independent…

Definition 5.3.6

Statement 𝑆 reduces to statement 𝑇 if “𝑇 ⇒ 𝑆” is provable.

Corollary 5.3.4

Assuming 𝑆 reduces to 𝑇 :
• If 𝑇 provable, 𝑆 provable
• If 𝑆 unprovable, 𝑇 unprovable.

Theorem 5.3.18

2nd incompleteness theorem

Recall the unprovable 𝐼 . We showed that “ZFC is consistent” ⇒ 𝐼 . But then 𝐼 reduces to “ZFC is
consistent”.

So “ZFC is consistent” is also not provable.

38

Time Complexity

Chapter 6: Time Complexity

Here is where we go from computability to practical computability. We will be interested in how effi-
ciently we can compute something.

Resources we have access to:

• time
• memory
• randomness
• quantum

Applications:

• simulations
• optimisation
• AI
• security, cryptography

Questions to answer:

• how to define complexity?
• what’s the right level of abstraction?
• how to analyse complexity?

Ponder 6.0.1

Gödel’s 1956 letter to von Neumann—an early formalisation of complexity

Let 𝐹 be math statement. We brute force search for proof with max length length 𝑛.

Let Ψ(𝐹 , 𝑛) be number of steps needed to search
Let 𝜑(𝑛) = max𝐹 Ψ(𝐹 , 𝑛)

How fast does 𝜑(𝑛) grow? If the proof is too long we might not even want to think about 𝐹 .

Essentially, what’s the asymptotic behaviour of 𝜑(𝑛)?

6.1 Analysing Complexity
Given function 𝐴. There are many ways to measure complexity of 𝐴

Worse case number of steps on inputs with length 𝑛.

max
𝑥, |𝑥| =𝑛

number of steps 𝐴(𝑥) takes

Asymptotic big-O bound
• abstracts away many detail
• sharp enough to compare algorithms

Polynomial-time concerns if it is in 𝑂(𝑛𝑘) for some 𝑘, which is more abstract than a big-O bound.
• Categorieses polytime as efficient, non-polytime as inefficient
• Polytime could come from exploiting some structure in the problem, whereas non-polytime tends

to involve brute force
• Robust: polytime categorisation of problems is consistent across machines

39

Time Complexity

• Closed: using polytime algorithm inside polytime algorithm is still polytime
• Qualitative difference between in polytime and not in polytime

Note 6.1.1

In TCS, we always input length as the notion of input size. Given input 𝑥, 𝑛 = |𝑥| is the number
of symbols in 𝑥.

Example 6.1.1

Primality test by trying divider from 2 to input integer 𝑁 .

Notice 𝑛 = |𝑁| = lg 𝑁 , so number of iterations is in 𝑂(𝑁) = 𝑂(2𝑛)

6.2 Asymptotics
Definition 6.2.1

Given 𝑓, 𝑔 : ℝ+ → ℝ+, 𝑓(𝑛) ∈ 𝑂(𝑔(𝑛)) iff ∃𝑐 > 0, 𝑛0 > 0 such that ∀𝑛 ≥ 𝑛0, 𝑓(𝑛) ≤ 𝑐𝑔(𝑛).

Fact 6.2.1

∀𝑚 > 0, lg 𝑚 < 𝑚

Theorem 6.2.1

∀𝜀 > 0, 𝑘 > 0, lg𝑘 𝑛 ∈ 𝑂(𝑛𝜀), viz. polylog is always in poly.

Proof sketch: lg(𝑛𝜀
𝑘) < 𝑛𝜀

𝑘 , rearrange, take 𝑘-th power, and set 𝑐 = (𝑘
𝜀)

𝑘

Fact 6.2.2

∀𝑏 > 1, log𝑏 𝑛 ∈ Θ(lg 𝑛) i.e. base doesn’t matter for log.

Definition 6.2.2

Some names

• Polynomial 𝑂(𝑛𝑘) with constant 𝑘 > 0
• Exponential 𝑂(2𝑛𝑘) with constant 𝑘 > 0

Definition 6.2.3

𝘗 refers to the set of polytime decidable languages

Theorem 6.2.2

Composing polytime algorithms is still polytime.

40

Time Complexity

Definition 6.2.4

Intrinsic complexity is the complexity of the most efficient possible algorithm for some problem.

Strategy 6.2.1

Sometimes this is not well defined. Sometimes this is hard to find. Sometimes one can bound
this by contradiction (suppose an algorithm computes this in less than some 𝑇 (𝑛), then the
algorithm cannot be right) or by its output size (since writing output takes at least length of
output).

6.3 Complexity Model
Time complexity may be different for one-tape TM, reg machine, and our computers… so to get some-
thing closer to real situation we use the Random Access Machine (RAM) model. It’s like a machine
with random access memory. The machine can also operate on short numbers efficiently.

Definition 6.3.5

Short vs Long numbers

Short numbers are defined to be those with length in 𝑂(lg 𝑛) = 𝑂(lg lg 𝑁) where 𝑛 is length of
input. These can be thought to fit in a register. Equivalently, a number 𝑥 is small if 𝑥 ∈ 𝑂(𝑛𝑘) for
constant 𝑘.
Long numbers are those that are not short. When operating on long numbers, one has to work
with them as strings.

Arithmetic operations + - * / > < on short numbers 1 step
Memory access A[0xffe67a41] 1 step

6.4 Long Number Operations
Example 6.4.2

Integer addition

Consider fn B: int => B + B with 𝑛 = |𝐵| = lg 𝐵.

This has to be done by string manipulation, since |𝐵| ∉ 𝑂(lg 𝑛). We go through the bits from right
to left to add while pushing carry onto the next bit, so 𝑂(𝑛).

41

Time Complexity

Example 6.4.3

Integer multiplication

Consider fn (A: int) (B: int) => A * B. We can multiply A by every bit in B and add things up
(scaled appropriately by some power of the base). This is 𝑂(|𝐴‖𝐵|).

We can try divide and conquer. WLOG say |𝐴| = |𝐵| = 𝑛. Then break each into 2 pieces,
𝐴 = 𝑎𝑏, 𝐵 = 𝑐𝑑, so 𝐴𝐵 = (𝑎 ⋅ 10

𝑛
2 + 𝑏)(𝑐 ⋅ 10

𝑛
2 + 𝑑) = 𝑎𝑐 ⋅ 10𝑛 + (𝑎𝑑 + 𝑏𝑐) ⋅ 10

𝑛
2 + 𝑏𝑑 but this

is still 𝑂(𝑛2)…

Maybe there’s a better way (Karatsuba algorithm). Observe

(𝑎 + 𝑏)(𝑐 + 𝑑) = 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑
⇒ 𝑎𝑑 + 𝑏𝑐 = (𝑎 + 𝑏)(𝑐 + 𝑑) − 𝑎𝑐 − 𝑏𝑑

And we already have 𝑎𝑐, 𝑏𝑑, so we only need 3 recursive multiplication.

So 𝑂(𝑛lg 3)

Fact 6.4.3

There is a 𝑂(𝑛 lg 𝑛) algorithm for integer multiplication

Example 6.4.4

Matrix multiplication

Naive dot products: 𝑂(𝑛3).

Strassen’s algorithm by divide and conquer and addition trick to save one recursive call 𝑂(𝑛lg 7).

Current world record 𝑂(𝑛2.37155); whether we can get 𝑂(𝑛2) is open problem.

42

Graph Theory

Chapter 7: Graph Theory

Ponder 7.0.1

Many problems can be modelled in the form of graphs

Example 7.0.1

• Facebook (friendship graph)
• Enemybook (enemyship graph)
• Zachary Karate Club (from anthropology paper “An Information Flow Model for Conflict and

Fission in Small Groups”)
• Google page rank (links as directed edges)
• Google map
• Kidney exchange (compatibility search, pairing donations⁸)

⁸US national kidney exchange programme uses some algorithm by some CMU prof

7.1 Undirected Graphs
Definition 7.1.1

A simple undirected graph 𝐺 is a tuple 𝑉 , 𝐸 where

• 𝑉 is a finite set of edges
• 𝐸 is a set of edges represented as sets of size-2 subsets of 𝑉

Note 7.1.1

Edge cases in definition

• 𝐸 = ∅ is fine, with every vertex being orphan
• 𝑉 = ∅ is a null graph? Maybe not very useful

The convention is to denote 𝑛 = |𝑉 |, 𝑚 = |𝐸|.

7.1.1 Neighbourhood

Definition 7.1.2

Let 𝑢, 𝑣 ∈ 𝑉 , 𝑢 and 𝑣 are neighbours if {𝑢, 𝑣} ∈ 𝐸.

The neighbourhood function maps vertex to its set of neightbours 𝑁(𝑣) = {𝑢 ∈ 𝑉 , {𝑢, 𝑣} ∈ 𝐸}.

Degree of 𝑣 is deg(𝑣) = |𝑁(𝑣)|

A 𝒅-regular graph is graph 𝐺 = (𝑉 , 𝐸) such that ∀𝑣 ∈ 𝑉 , deg(𝑣) = 𝑑.

43

Graph Theory

Lemma 7.1.1

The handshake lemma

Given graph 𝐺 = (𝑉 , 𝐸), we have

∑
𝑣∈𝑉

deg(𝑣) = 2𝑚

The proof is by double counting. Put tokens on edges next to each vertex and:
1. Each edge has 2 tokens, thus RHS
2. Each vertex 𝑣 has deg(𝑣) tokens, thus LHS

Example 7.1.2

Does there exist 5-regular graph with 251 vertices?

No. By handshake lemma ∑𝑣∈𝑉 deg(𝑣) = 2𝑚 ⇒ 5𝑛 = 5 ⋅ 251 = 2𝑚 ⇒ 𝑚 ∉ ℕ.

7.1.2 Walks and Paths

Definition 7.1.3

A walk in 𝐺 is a sequence 𝑢1, …, 𝑢𝑘 such that ∀𝑖 ∈ {2, …, 𝑘}, {𝑢𝑖−1, 𝑢𝑖} ∈ 𝐸. Its length is the
number of edges in the sequence

A path is a walk without repeated vertices, viz. 𝑢1, …, 𝑢𝑘 distinct.

The distance between 𝑢, 𝑣 ∈ 𝑉 is the length of the shortest path between 𝑢, 𝑣, denoted dist(𝑢, 𝑣).
If no such path exists, the distance is dist(𝑢, 𝑣) = ∞.

A circuit in 𝐺 is a walk from some 𝑢 ∈ 𝑉 to 𝑢 ∈ 𝑉 .

A cycle is a circuit without repeated vertices (with length ≥ 3).

An acyclic graph has no cycle.

7.1.3 Connectedness

Definition 7.1.4

A graph is connected if ∀𝑢, 𝑣 ∈ 𝑉 , ∃ a path between 𝑢 and 𝑣.

A connected component (CC) is a connected part of a graph.

44

Graph Theory

Theorem 7.1.1

At least 𝐺 connected ⇒ 𝑚 ≥ 𝑛 − 1.

Proof. We take out all edges and put them back in one by one.

Each edge we add can be:

1. A connector that connects distinct components, so number of CCs goes down by 1 but no cycle
is introduced.

2. A cycle creator that connects vertices in the same CC, creating a cycle but leaving number of
CCs unchanged.

We must go from 𝑛 CCs to 1 to connect the graph, so we must use at least 𝑛 − 1 connectors. If we
add 𝑚 > 𝑛 − 1 edges, we must introduce a cycle creator at some point. □

Theorem 7.1.2

At least 𝐺 connected ∧ 𝑚 = 𝑛 − 1 ⇔ 𝐺 acyclic.

(⇒) by adding edges one by one argument and in the process we never create a cycle.
(⇐) go by contradiction, using the cases when adding edges one by one.

Fact 7.1.1

𝑛 − 1 edges are sufficient to connect a graph

7.2 Trees
Definition 7.2.5

An 𝒏-vertex tree is a graph that satisfies the following:

1. Connected
2. 𝑚 = 𝑛 − 1
3. Acyclic

Fact 7.2.2

Any two of the above automatically imply the third.

Definition 7.2.6

Given a tree 𝑇 = (𝑉 , 𝐸) and 𝑣 ∈ 𝑉 , 𝑣 is

• a leaf if deg(𝑣) = 1
• an internal node if deg(𝑣) ≠ 1

45

Graph Theory

Lemma 7.2.2

A tree with 𝑛 ≥ 2 has at least 2 leaves.

Proof: try using handshake lemma to get contradiction

1 + 2𝑛 ≤ ∑
𝑣∈𝑉

deg(𝑣) = 2𝑚 = 2(𝑛 − 1)

Theorem 7.2.3

A tree 𝑇 with 𝑙 leaves and max degree Δ must have Δ ≤ 𝐿.

Ideas:
1. Use handshake lemma and directly derive an inequality. Realise that the degree of leaves are 1

and assume for the worse case every internal node has degree Δ.
2. Induct on number of vertices. Use 𝑛 ≤ 3 for base case. For inductive step remove some leaf and

apply IH. Case on Δ′ after leaf removal to finish the proof.
3. Delete a vertex in the graph with degree Δ to get a forest of Δ trees. Case on the number of

leaves (at least 1 or at least 2) for each tree. Observe that each tree in the forest must contain
one leaf for the original graph.

7.3 Mininum Spanning Tree (MST)
Definition 7.3.7

A tree is a minimum spanning tree (MST) if it’s a subgraph tree connecting all vertices with
minimised total edge weight.

WLOG we can assume edge weights are distinct. In fact unique edge cost implies unique MST.

Theorem 7.3.4

MST Cut Property (aka light edge property)

Given graph 𝐺 = (𝑉 , 𝐸) and non-empty subset 𝑆 ⊂ 𝑉 , the cheapest edge connecting 𝑆 and 𝑉 ∖ 𝑆
must be in the MST.

Algorithm 7.3.1

Jarník-Prim Algorithm returns MST by:

1. Initialise 𝑋 = {𝑎} for some random 𝑎 ∈ 𝑉 ; 𝑇 = {}
2. While 𝑋 ≠ 𝑉 , find min cost edge out of 𝑇 and add it to 𝑇 , add the new vertex to 𝑋

The correctness follows directly from MST cut property. The cost is in 𝑂(𝑚𝑛). This algorithm
works even if there exist negative weight edges. It’s possible to get 𝑂(𝑚 lg 𝑚) with a better imple-
mentation.

46

Graph Theory

Fact 7.3.3

Pettie & Ramachandran 2002 proved an algorithm is optimal for MST, but we don’t know the big-
O bound.

7.4 Directed Graph
Definition 7.4.8

A directed graph 𝐺 is (𝑉 , 𝐸) such that

• 𝑉 is set of vertices similar to undirected graph
• 𝐸 contains size-2 tuples (𝑢, 𝑣) of vertices representing edges from 𝑢 to 𝑣

Definition 7.4.9

Neighbours in a directed graph can be in-neightbour and out-neightbour.

• a in-neightbour of 𝑢 is 𝑣 such that (𝑣, 𝑢) ∈ 𝐸
• a out-neightbour of 𝑢 is 𝑣 such that (𝑢, 𝑣) ∈ 𝐸

A sink is a vertex without out-neightbour; a source is a vertex without in-neightbour

7.5 Graph Search

7.5.1 Any-First Search (AFS)
Generaic graph search algorithm. It keeps track of some visited set and traverses the graph via neigh-
bours

47

Graph Theory

Algorithm 7.5.2

Any-First Search

fun AFS (G = (V, E)) s =
 let
 fun AFS' X F =
 if F = {} then X else
 let
 v = pick vertex from F
 X = X union {v}
 F = (F union N(v)) \ X
 in
 AFS' X F
 end
 in
 AFS {} {s}
 end

Sometimes we want to traverse every vertex, even if the graph is not connected. We can do

AFSAll = iterate (AFS G) V

Graph traversal by AFS induces some tree, with the root at the source node 𝑠 and edges tracing the
path through which every vertex is first visited.

7.5.2 Breadth-First Search (BFS)

Algorithm 7.5.3

Same as AFS, with F acting like a queue.

The run time is 𝑂(𝑚) for a single CC, or 𝑂(𝑚 + 𝑛) for the whole graph.

Observe that BFS-tree has these properties:

1. Shortest path from 𝑠 to some vertex 𝑡 can be found by 𝑡’s depth in the BFS tree.
2. Edges in the original graph but not the BFS tree can only connect vertices more than 1 layer away

in the BFS tree.

7.5.3 Depth-First Search (DFS)

Algorithm 7.5.4

Same as AFS, with F acting like a stack.

Likewise run time is 𝑂(𝑚) for a single CC, or 𝑂(𝑚 + 𝑛) for the whole graph.

Observe that BFS-tree has these properties:

1. Edges in the original graph but not the DFS tree can only go between descendent and ancestor. This
means no cross edge.

48

Graph Theory

7.6 Graph Matching
Ponder 7.6.2

We often want to match things… such as

machines ↔ jobs
professors ↔ courses

room ↔ courses
student ↔ internships9

How to solve? Graph!

⁹sadly a difficult one

Definition 7.6.10

A matching in graph 𝐺 is some 𝑀 ⊆ 𝐸 s.t. no two edges in 𝑀 share endpoint. The size of a
matching is |𝑀|.

A perfect matching matches every vertex.

7.6.1 Maximum Matching

Definition 7.6.11

A maximum matching is a matching such that it has the maximum possible size among all pos-
sible matchings. This can be thought of as a global optimal.

A maximal matching is a matching such that no more edge can be added to the current matching
to form a bigger matching. This can be thought of as a local optimal.

The maximum matching, then, is the problem of finding a maximum matching. A trivial brute force
solution exists but is in Ω(2𝑚). Greedy algorithm doesn’t seem to work. Turns out we can have an
algorithm based on path analysis.

Definition 7.6.12

Give some matchin 𝑀 for 𝐺, a path 𝑝 in 𝐺 is alternating w.r.t 𝑀 if the edges alternate between
∈ 𝑀 and ∉ 𝑀 .

An alternating path is an augmenting path if the endpoints of the path are not part of 𝑀 .

Observe that the existence of an augmenting path means we can have a better matching. We can at
least match one more pair by switching the matching status of each edge in the augmenting path.

49

Graph Theory

Lemma 7.6.3

If every vertex in 𝐺 has max degree 2, then every CC in 𝐺 is either a path or a cycle.

Proof. By inducting on number of vertices. For 𝐺 with max degree 2, pick a vertex 𝑣 to remove.
After removal the graph 𝐺′ still has max degree 2, so 𝐺′ has only disjoint paths or cycles. We case
on deg(𝑣) when adding it back:

• If deg(𝑣) = 0, then 𝑣 is isolated so it’s a length-0 path on its own
• If deg(𝑣) = 1, then the vertex 𝑣 is connected to must have degree 1 in 𝐺′, which is an endpoint

of a path, so adding 𝑣 back in extends that path.
• If deg(𝑣) = 2, then removing 𝑣 breaks a cycle to create a path. Adding it back in recreates the

cycle.

□

Theorem 7.6.5

∄ augmenting path ⇔ 𝑀 is maximum

Proof. Show instead ∃ augmenting path ⇔ 𝑀 not maximum

(⇒) Trivial. Take the augmenting path and improve matching.

(⇐) If 𝑀 not maximum, ∃ maximum matching 𝑀∗, |𝑀∗| > |𝑀|.

Consider 𝑆 = 𝑀∗ △ 𝑀 = (𝑀∗ ∪ 𝑀) ∖ (𝑀∗ ∩ 𝑀) as in figure.

Figure 7.6.1

Observe ∀ vertex 𝑣 involved in 𝑆, deg(𝑣) ∈ {1, 2} (otherwise it should contradict 𝑀 and 𝑀∗ be-
ing matchings), so 𝑆 is a set of disjoint cycles and paths by lemma.

Also, each path or cycle in 𝑆 must alternate between being in 𝑀 and in 𝑀∗. Since cycles have even
lengths, one alternating path must exist, call it 𝑝 ⊆ 𝑆. Then some such 𝑝 must have more edges
from 𝑀∗ than 𝑀 in order for |𝑀∗| > |𝑀| to hold. This is an augmenting path.

□

50

Graph Theory

Algorithm 7.6.5

Finding maximum matching

Start with some matching 𝑀 . While there is augmenting path, find it and augment the matching.
Return final matching.

Figure 7.6.2

Correctness: this must terminate since we add one edge every iteration. When it terminates we
must have no more augmenting path left so it must return a maximum matching.

But then we need to be able to find augmenting path. Here’s an algorithm.

Algorithm 7.6.6

Algorithm for finding augmenting path (bipartite graph case)

Given graph 𝐺 = (𝑉 , 𝐸), partitions 𝑋, 𝑌 , and matching 𝑀 .
1. Point unmatched edges from 𝑋 to 𝑌
2. Point matched edges from 𝑌 to 𝑋
3. For each unmatched vertex 𝑥 ∈ 𝑋, run DFS starting from 𝑥 to find some unmatched 𝑦 ∈ 𝑌 . If

found, retrace the search path; it’s an augmenting path. If nothing found, no augmenting path.

This is polytime by inspection.

Lemma 7.6.4

A tree has at most one perfect matching.

Proof. (Sketch) Suppose we have two perfect matchings 𝑀 and 𝑀 ′. Take their symmetric differ-
ence 𝑆. There must not exist cycle in 𝑆 since it’s a tree, so 𝑆 has a path 𝑝 with edges alternating
between in 𝑀 and 𝑀 ′. But that means one of 𝑀 and 𝑀 ′ fail to match one of the endpoints of 𝑝,
contradiction on them being perfect matching. □

7.6.2 Bipartite Graphs and 𝑘-Colourability

Definition 7.6.13

A graph 𝐺 is bipartite if ∃𝑈 ⊆ 𝑉 , ∀𝑒 = {𝑢, 𝑣} ∈ 𝐸, 𝑢 ∈ 𝑈 ⇔ 𝑣 ∈ 𝑉 ∖ 𝑈 .

We sometimes explicitly write bipartite graph by 𝐺 = (𝑋, 𝑌 , 𝐸) where 𝑋 = 𝑈, 𝑌 = 𝑉 ∖ 𝑈 .

51

Graph Theory

Definition 7.6.14

A graph is 𝑘-colourable if you can colour each vertex with one of 𝑘 colours such that
∀𝑒 = {𝑢, 𝑣} ∈ 𝐸, 𝑢 and 𝑣 have different colour.

Fact 7.6.4

bipartite ≡ 2-colourable

by inspection.

Theorem 7.6.6

no oll-length cycle ⇔ 2-colourable

Proof. (⇒) Trivial. Suppose there exists odd-length cycle. Then go along the cycle to put things
in the right partition. This would always lead to the first vertex having to be in both partition,
that’s bad.

(⇐) By construction. WOLG assume graph connected and we 2-colour by BFS. Simply colour with
alternating colour for each level.

Figure 7.6.3

Observe:

• edges connecting vertices at the same level (like 𝐴) cannot happen because that implies odd-
length cycle.

• edges that skip even number of levels (like 𝐵) cannot happen because BFS tree cannot have those.

Then all non-tree edges go between consecutive cycles, which is correctly coloured. Tree-edges are
also correctly coloured by construction. □

7.7 Stable Matching
We often have situations involving a 2-sided market. There are 2 types of participants, each with their
own preference. If we assume all entities in the market behave rationally, an interesting is whether
there always exists a stable matching. This is a Nobel prize problem in Economics. Also interesting is
that the existence of stable matching was proved by designing an algorithm.

52

Graph Theory

Example 7.7.3

Types of matchings in real world:

• residents ↔ hospitals
• students ↔ internships

In each situation, each side has preference rankings for which entity on the other side they want
to get matched to.

Informally, we can see a matching could be unstable if there exists some unmatched pair with end-
points who prefer each other more than their current match. In this case, they have an incentive to
deviate from the matching—not something we want if we want a single system to decide matchings.

Definition 7.7.15

Formally, a stable matching problem involves two sets (𝑋, 𝑌) with |𝑋| = |𝑌 | = 𝑛, each vertex
has a preference with vertices in the other set, which are complete total orderings. The goal is to
find a perfect matching between 𝑋 and 𝑌 without unstable pairs.

An unstable pair is defined to be some unmatched (𝑥, 𝑦) ∈ 𝐴 × 𝐵 such that 𝑥, 𝑦 prefer each other
more than their current match.

7.7.1 Gale-Shapley Algorithm
It can be shown that a stable matching always exists by presenting an algorithm.

Algorithm 7.7.7

The Gale-Shapley algorithm

Given a stable matching problem with sets (𝑋, 𝑌), we find stable matching by:

• while ∃ unmatched 𝑥 ∈ 𝑋: 𝑥 gives offer to the 𝑦 ∈ 𝑌 such that 𝑦 is highest in 𝑥’s preference
list and 𝑥 has not given offer to 𝑦.

• for 𝑦 in 𝑌 , if it gets an offer to 𝑥, case on:
1. If 𝑦 is currently unmatched: accept and form the pair (𝑥, 𝑦)
2. If 𝑦 prefers 𝑥 over current match 𝑥′, accept 𝑥’s offer, and reject 𝑥′

3. If 𝑦 prefers its current match 𝑥′ over 𝑥, decline 𝑥’s offer
• return the matching

53

Graph Theory

Theorem 7.7.7

Gale-Shapley always returns a stable matching.

Proof.

First, by inspection, we run a maximum of 𝑂(𝑛2) iterations, so the algorithm always terminates.

Next, it must return a perfect matching. AFSOC otherwise, then there exists some unmatched
𝑥 ∈ 𝑋, so 𝑥 must have been rejected by all 𝑦 ∈ 𝑌 . Observe that 𝑦 ∈ 𝑌 never become unmatched
once matched. But that means 𝑥 gave offer to every 𝑦 ∈ 𝑌 , so every 𝑦 ∈ 𝑌 is matched. That can
only happen in a perfect matching. Contradiction.

Finally we want to show there is no unstable pair. Observe that 𝑥 ∈ 𝑋 only does down their pref-
erence list, and 𝑦 ∈ 𝑌 only goes up their preference list. Consider every unstable (𝑥, 𝑦). There are
two cases:
1. 𝑥 never gave 𝑦 an offer, then 𝑥 prefers its current match 𝑦′ over 𝑦
2. 𝑥 gave 𝑦 offer, then the only reason 𝑥 not currently matched to 𝑦 is because 𝑦 rejected 𝑥 at some

point, so 𝑦 prefers its current match 𝑥′ over 𝑥.

Therefore we don’t have any unstable pair.

□

Definition 7.7.16

W 𝑥 ∈ 𝑋 is a valid partner with some 𝑦 ∈ 𝑌 if (𝑥, 𝑦) can be a matched pair in some stable match-
ing. The best valid partner of 𝑥 is the valid partner on 𝑥’s list ranked the highest, and the worst
valid partner of 𝑥 is the valid partner on 𝑥’s list ranked the lowest. We denote these two best(𝑥)
and worst(𝑥) respectively.

Note WLOG these definitions work in either direction.

Definition 7.7.17

A stable matching is 𝑿-optimal if the matching is {(𝑥, best(𝑥)) | 𝑥 ∈ 𝑋}, and is 𝑿-pessimal if
the matching is {(𝑥, worst(𝑥)) | 𝑥 ∈ 𝑋}.

Theorem 7.7.8

Gale-Shapley is 𝑋-optimal.

Proof.

AFSOC some 𝑥 ∈ 𝑋 didn’t get matched to best(𝑥). Consider the first time 𝑥 gets rejected by a
valid partner 𝑦.

Suppose 𝑦 rejected 𝑥 because it preferred 𝑥′. Then in another stable matching 𝑥′ ↔ 𝑦′, 𝑥 ↔ 𝑦.
Then 𝑥′ prefers 𝑦′ over 𝑦. So 𝑥 got rejected by valid partner 𝑦′ before 𝑥 got rejected by 𝑦, we fixed
𝑦 to be the first thing to reject 𝑥. Contradiction. □

54

Graph Theory

Theorem 7.7.9

Gale-Shapley is 𝑌 -optimal.

Ponder 7.7.3

If we use Gale-Shapley, is there an incentive for 𝑥 ∈ 𝑋 or 𝑦 ∈ 𝑌 to lie?

• for 𝑥 ∈ 𝑋, no because they get matched to their best valid partner
• for 𝑦 ∈ 𝑌 … probably

Ponder 7.7.4

Is there a better algorithm that is not biased to one side?

Theorem 7.7.10

Roth’s theorem: no matter what matching algorithm we use, there always exists a slide with
incentive to lie

55

P vs NP

Chapter 8: P vs NP

Beyond computability, we examine practical computability—given a problem, is there an algorithm to
compute it efficiently?

Some terms:

• tractable — efficiently decidable
• intractable — not efficiently decidable

8.1 Polynomial-Time Reduction

8.1.1 Some Problems of Interest
𝒌-Colouring Problem: Given graph 𝐺 = (𝑉 , 𝐸), decide whether 𝐺 is 𝑘-colourable

𝑘COL = {⟨𝐺⟩ | 𝐺 is 𝑘-colourable}

Clique Problem: Given graph 𝐺 = (𝑉 , 𝐸), decide if 𝐺 contains a clique of size 𝑘. A clique
is a subset of vertices 𝑆 ⊆ 𝑉 that are neighbours of all other vertices in the clique viz.
∀𝑢, 𝑣 ∈ 𝑆, 𝑢 ≠ 𝑣 ⇒ {𝑢, 𝑣} ∈ 𝐸.

CLIQUE = {⟨𝐺, 𝑘 ∈ ℕ+⟩ | 𝐺 contains a 𝑘-clique}

Independent Set Problem: Given a graph 𝐺 = (𝑉 , 𝐸), decide if 𝐺 contains an independent set of
size 𝑘. An independent set is a subset of vertices such that there is no edge between any two vertices
in the subset.

IND-EST = {⟨𝐺, 𝑘 ∈ ℕ+⟩ | 𝐺 contains a size 𝑘 independent set}

CNF Satisfiability Problem: Given a logic formula 𝜑 in CNF¹⁰ form with boolean variables 𝑥1, …, 𝑥𝑛,
does there exist to these boolean variables such that 𝜑 is true?

¹⁰conjeunctive normal form, which requires that the formula is a conjunction of clauses, which are disjunction of
literals

SAT = {⟨𝜑 : CNF⟩ | 𝜑 is satisfiable}

Some variants include constraints on the number of literals in each clause

3SAT = {⟨𝜑 : CNF in which each clause has exactly 3 literals⟩ | 𝜑 is satisfiable}

Boolean Circuit Satisfiability: (informally) Given a circuit represented as an acyclic graph, in which
node is a gate—one of AND, OR, NOT, a constant voltage—0 or 1, one of the 𝑛 input nodes, or an output
gate, connected to a reasonable number of in/out wires aka edges, is there some input combination
that makes the output 1?

CIRCUIT-SAT = {⟨𝐶 : valid circuit⟩ | 𝐶 is satisfiable}

Other interesting problems that we won’t formally define:

• Gödel’s Bounded Entscheidungsproblem—given statement 𝑆, decide if there exists proof of 𝑆
with length at most 𝑘

• Subset sum—given 𝑋 ⊆ ℤ does there exist subset 𝐴 ⊆ 𝑋 s.t. ∑𝑎∈𝐴 𝑎 = 𝑘?

56

P vs NP

• Scheduling—given 𝑛 students, 𝑚 courses, 𝑘 time slots, is it possible to schedule final exams without
conflict? (a similar problem would be to minimise conflict)

• Sudoku—fill in 𝑛 × 𝑛 sudoku board

Note 8.1.1

We can assume there is some implicit type checker for these problems. The input space, as in all
decision problems, is Σ∗, but only a subset of inputs are valid encodings of the problems. Invalid
inputs should be rejected.

Ponder 8.1.1

In general, many problems feel decidable but not in polytime because

• Solution space has exponential size (so decidable by brute force)
• No known mathematical structure to exploit (so unable to not check exponentially many candi-

date solutions)

8.1.2 The P vs NP Problem
Problem: can NP problems be solved in polytime?

It turns out that, after many years, we didn’t find any polytime solution for problems we believe to be
in NP. The conjecture is that ∄ polytime decider for them, but we don’t have a proof either.

The P vs NP problem is rather intractable. To approach the problem we ended up first finding evidence
that P ≠ NP. One discovery connecting NP problems is that many NP problems can reduce to each
other, so not having polytime decider for a set of problems is stronger evidence than not having poly-
time decider for one problem. Suppose a set of 𝑛 languages {𝐿1, …, 𝐿𝑛} all polytime reduce to 𝐴. If
many such 𝐿𝑖 not in 𝑃 , it’s some evidence that 𝐴 is also not in 𝑃 .

8.1.3 Polynomial Time Reduction Methods
This helps us expand the landscapes of tractable problems and intractable problems.

Strategy 8.1.1

Cook reduction aka Polynomial-time Turing reduction

Given languages 𝐴 and 𝐵, assume there is some decider 𝑀𝐵 for 𝐵, build a polytime decider for 𝐴
that makes use of 𝑀𝐵 (assuming 𝑀𝐵 is an 𝑂(1) oracle).

We then say 𝐴 polytime reduces to 𝐵, write 𝐴 ≤𝑃 𝐵.

Corollary 8.1.1

Observe that if 𝑀𝐵 is a polytime decider, we just decided 𝐴 in polytime. Taking the contrapositive,
if 𝐴 is not polytime decidable, then 𝐵 cannot be polytime decidable.

Corollary 8.1.2

Cook reduction is transitive.

57

P vs NP

Strategy 8.1.2

Karp reduction aka Polynomial-time mapping reduction

Given languages 𝐴 and 𝐵, assume there is some decider 𝑀𝐵 for 𝐵, transform a problem instance
for language 𝐴 into that for language 𝐵, and call 𝑀𝐵 as a tail call to decide 𝐴.

We essentially define a polytime transformation function 𝑓 : Σ∗ → Σ∗ such that
𝑥 ∈ 𝐴 ⇔ 𝑓(𝑥) ∈ 𝐵.

We then say 𝐴 Karp reduces to 𝐵, write 𝐴 ≤𝑃
𝑚 𝐵.

Corollary 8.1.3

Karp reduction is transitive.

8.2 Computational Hardness and Completeness
Definition 8.2.1

𝐴 is 𝒞-hard if 𝘗 ⊆ 𝒞 and ∀𝐿 ∈ 𝒞, 𝐿 ≤𝑃 𝐴.

Intuitively, 𝐴 is at least as hard as 𝒞, since nothing in 𝒞 is harder than 𝐴.

Definition 8.2.2

𝐴 is 𝒞-complete if A is 𝒞-hard and 𝐴 ∈ 𝒞.

This means 𝐴 represents the hardest language in 𝒞.

Note 8.2.2

These can also be defined in terms of ≤𝑃
𝑚. Karp reduction is more general, and gives different no-

tions of 𝖭𝖯-completness.

Corollary 8.2.4

If 𝐴 is 𝒞-complete:

𝐴 ∈ 𝘗 ⇔ 𝒞 = 𝘗

Proof.

(⇐) trivial
(⇒) then ∀𝐿 ∈ 𝒞, 𝐿 ≤𝑃 𝐴 ⇒ 𝐿 ∈ 𝘗 , so 𝒞 ⊆ 𝑃 , so 𝒞 = 𝘗 □

8.3 Non-Deterministic Polynomial Time (NP)

58

P vs NP

Definition 8.3.3

A language 𝐿 is in 𝖭𝖯 if ∃ polytime verifier TM 𝑉 and constant 𝑘 > 0 s.t.

• ∀𝑥 ∈ 𝐿, ∃𝑢 with |𝑢| ≤ |𝑥|𝑘, 𝑉 (𝑥, 𝑢) accepts
• ∀𝑥 ∉ 𝐿, ∀𝑢 ∈ Σ∗, 𝑉 (𝑥, 𝑢) rejects

Informally, if a 𝑥 ∈ 𝐿, there exists some polylength proof that a polytime verifier would accept,
and the verifier never accepts if 𝑥 ∉ 𝐿.

Corollary 8.3.5

Every 𝖭𝖯 problem is solvable by brute force

Strategy 8.3.3

To show a language 𝐿 is in 𝖭𝖯, construct a working verifier 𝑉 .

1. Show 𝑉 is polytime
2. Proof 𝑉 is correct

• Let 𝑥 ∈ 𝐿, show there is a polylen proof 𝑢 such that 𝑉 (𝑥, 𝑢) accepts
• Let 𝑥 ∉ 𝐿, show no proof 𝑢 results in 𝑉 (𝑥, 𝑢) accepts

Some known 𝖭𝖯 languages:

• 3COL
• CIRCUIT-SAT
• CLIQUE
• IS
• 3SAT

Example 8.3.1

Proving CLIQUE ∈ 𝖭𝖯

Construct verifier 𝑉 by:

 V ((G = (V, E)), c), S =
 if S doesn't encode c vertices then reject else
 if exists pair {x, y} in S, {x, y} not in E then reject else
 accept

8.3.1 NP-Completeness

Theorem 8.3.1

Cook-Levin: SAT is 𝖭𝖯-complete

Theorem 8.3.2

3SAT is 𝖭𝖯-complete

59

P vs NP

Theorem 8.3.3

3COL is 𝖭𝖯-complete

Theorem 8.3.4

CLIQUE is 𝖭𝖯-complete

Idea: build a verifier to show it’s in 𝖭𝖯. Then show 3SAT ≤𝑃
𝑚 CLIQUE. The mapping function

takes some 3CNF formula 𝜑 with 𝑚 clauses, for each clause (𝑥𝑖, 𝑦𝑖, 𝑧𝑖), make 3 vertices correspond-
ing to each literal. We want some variable assignments, which we represent as a 𝑚-clique. For
vertices not from the same clause, connect them if making both literals true doesn’t lead to con-
tradiction. Then, show that the constructed graph corresponds to an accept instance of “CLIQUE”
with 𝑘 = 𝑚 iff 𝜑 is satisfiable.

8.4 Example Reductions
Example 8.4.2

CLIQUE ≤𝑃
𝑚 IND-SET

Idea: given graph 𝐺 and clique size 𝑘, construct a complement graph 𝐺′ (flip membership status
of all possible edges in 𝐸) and feed (𝐺′, 𝑘) to a decider for IND-SET. Then show that 𝐺 has 𝑘-
clique iff 𝐺′ has size-𝑘 independent set.

Example 8.4.3

IND-SET ≤𝑃
𝑚 CLIQUE

Idea: do the same reduction as above, and flip the direction of implications in the correctness proof.

Example 8.4.4

3SAT ≤𝑃
𝑚 CLIQUE

Idea: given 3CNF formula 𝜑 with 𝑘 clauses. For each clause 𝐶 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖), turn 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 into
(unique) vertices. Connect the vertices such that no edge connects literals from the same clause
and no edge connects contradicting assignments. Then look for a 𝑘-clique in the graph. Such clique
must connect all clauses without contradiction on assignment.

60

Randomised Algorithms

Chapter 9: Randomised Algorithms

One way to deal with NP-complete problems is by approximation, and randomisation helps.

9.1 Probability Theory
Recall probability model from measure theory (Ω, ℙ) where Ω is sample space and ℙ : Ω → [0, 1] is
measure.

9.1.1 CS Approach to Probability Theory
Turn real world into code, and build probability Tree.

Example 9.1.1

Flip coin; if head, throw 3-sided die; else throw 4-sided die

flip = Ber(1/2)
if flit = 1:
 die = randInt(1, 3)
else:
 die = randInt(1, 4)

9.1.2 Probability Concepts to Know
• Events e.g. 𝐸 = {die roll 3 or higher}
• Conditional probability ℙ[𝐸2|𝐸1]
• Independence — run code in opposite order doesn’t change behaviour
• Events 𝐴, 𝐵 are independent if ℙ[𝐴 ∩ 𝐵] = ℙ[𝐴]ℙ[𝐵]
• Random Variable 𝑋 : Ω → ℝ
• Expectation 𝔼[𝑋]
• Indicator RV

Theorem 9.1.1

Markov’s Inequality

Given non-negative RV 𝑋,

ℙ[𝑋 ≥ 𝑐𝔼[𝑋]] ≤
1
𝑐

or equivalently

ℙ[𝑋 ≥ 𝑐] ≤
𝔼[𝑋]

𝑐

61

Randomised Algorithms

Theorem 9.1.2

Chain rule. Given events 𝐴1, …, 𝐴𝑛,

ℙ[⋂
𝐴𝑘∈{𝐴1,…,𝐴𝑛}

𝐴𝑘] = ℙ[𝐴1]ℙ[𝐴2|𝐴1]…ℙ[𝐴𝑛| ⋂
𝐴𝑘∈{𝐴1,…,𝐴𝑛−1}

𝐴𝑘]

Theorem 9.1.3

Law of total probability. If 𝐵1, …, 𝐵𝑛 partitions Ω then

ℙ[𝐴] = ∏
𝐴𝑘∈{𝐵1,…,𝐵𝑛}

ℙ[𝐴|𝐵𝑘]ℙ[𝐵𝑘]

Theorem 9.1.4

Linearity of expectation. Given RVs 𝑋1, …, 𝑋𝑛

𝔼[∑ 𝑐𝑘𝑋𝑘] = ∑ 𝑐𝑘𝔼[𝑋𝑘]

9.2 Randomised Algorithms
Ponder 9.2.1

When do we need randomness in CS?

• Dinner problem—given region, how many ways to tile it with 2 × 1 rectangles?
• Useful in physics
• We have efficient randomised approximation algorithm, but not deterministic algorithm

• Distributed systems—how to break symmetry in situations like two cars running the same pro-
gramme running into each other
• Proven to require randomness

• Chicken game—Nash equilibrium: all players have no incentive to choose some other action
• A theorem says every game has Nash equilibrium if players pick probabilistic strategies

• Cryptography
• Error correction

• Assume probabilistic noise in data, how to recover the information?
• Communication conflict—two servers having giant files, are they the same? can we check with-

out sending 𝑂(𝑛) bits?
• Randomised approach doable with 𝑂(lg 𝑛) bits

• Quantum compute

9.2.1 Randomised Algorithms Definitions

62

Randomised Algorithms

Definition 9.2.1

A randomised algorithm has access to random bits.

For simplicity, we will say it has access to RandInt and Bernoulli, two random functions with
𝑂(1) cost.

There are things random algorithms need to sacrifice, and there is usually a tradeoff between time and
correctness. We have different types of random algorithms that choose to gamble with one of these.

Definition 9.2.2

A Monte Carlo algorithm 𝐴MC computes 𝑓 : Σ∗ → Σ∗ if ∀𝑥 ∈ Σ∗

• ℙ[result incorrect] = ℙ[𝐴MC(𝑥) ≠ 𝑓(𝑥)] ≤ 𝜀 for some error rate 𝜀 ∈ [0, 1)
• ℙ[𝐴MC(𝑥) finishes within 𝑇 (|𝑥|) steps] = 1 for some time function 𝑇 (𝑛)

Definition 9.2.3

A Las Vegas algorithm 𝐴LA computes 𝑓 : Σ∗ → Σ∗ if ∀𝑥 ∈ Σ∗

• ℙ[result correct] = ℙ[𝐴LA(𝑥) = 𝑓(𝑥)] = 1
• 𝔼[number of steps 𝐴LA(𝑥) takes] ≤ 𝑇 (|𝑥|) for some time function 𝑇 (𝑛)

It turns out that we can convert between these two types of random algorithms.

Theorem 9.2.5

Given 𝑇 (𝑛)-time LA algorithm 𝐴LA. We can build 𝑂(𝑇 (𝑛)) MC algorithm with any desired error
rate 𝜀 > 0.

A_MC(x) =
 match A_LA(x) for maximum (1/epsilon)T(|x|) steps:
 not terminate => return whatever
 terminate with output y => return y

The runtime is in 𝑂(1
𝜀𝑇 (𝑛)) = 𝑂(𝑇 (𝑛)).

The error rate is the probability of 𝐴LA taking too long.

ℙ[error] = ℙ[𝐴LA(𝑥) step count >
1
𝜀
𝑇 (|𝑥|)]

≤
𝔼[𝐴LA(𝑥) step count]

1
𝜀𝑇 (|𝑥|)

≤
𝑇 (|𝑥|)
1
𝜀𝑇 (|𝑥|)

= 𝜀

63

Randomised Algorithms

Theorem 9.2.6

Given MC algorithm 𝐴MC with 𝑇𝐴(𝑛) run time and a checker 𝑉 for 𝐴MC’s result that runs in
𝑇𝑉 (𝑛) time, we can build an LV algorithm.

A_LV(x) =
 loop:
 if A_MC(x) correct, return result

Notice we only return correct results.

The run time is distributed geometrically. The success rate is some 𝑝, so it takes 1
𝑝 iterations in

expectation. That implies an expected step count in 𝑂(1
𝑝(𝑇𝐴(|𝑥|) + 𝑇𝑉 (|𝑥|))).

Example 9.2.2

Example uses of randomised algorithm with problems related to primes.

isPrime—check if input 𝑥 is prime.

• We could try dividing 𝑥 by 2 to
√

𝑥. This is exponential time 𝑂(
√

2𝑛).
• 2002 result: isPrime ∈ 𝘗 , but known algorithm is 𝑂(𝑛6).
• 1975 Miller-Rabin algorithm: 𝑂(𝑛2) randomised algorithm with error rate 2−300.

genPrime—generate random prime with 𝑛 bits.

• Fact: about 1
𝑛 of 𝑛-bit numbers are prime.

• A natural random prime algorithm is to generate random bits of length 𝑛, check if it is prime,
and repeat until we get a prime. This is 𝑂(𝑛3).

• Whether a deterministic random prime generation algorithm exists is an open problem¹¹.

(primeFactorise—given number, return prime factorisation. This is known to be hard, and we use
its hardness in cryptography.)

¹¹In fact a PolyMath Project problem

9.2.2 Randomised Maximum Cutting
Consider the max cut problem. Is there a way to approximate it efficiently?

Definition 9.2.4

The maximum cut problem is as follows, with each being equivalent:

• Given graph 𝐺, colour vertices with two different colours (each used at least once), maximising
the number of edges with different coloured endpoints

• Partition 𝑉 into non-empty 𝑋 and 𝑌 , maximising the number of edges that go between 𝑋 and 𝑌
• Get as close to bipartite as possible

This problem is in fact NP-hard!

But we can approximate this with a trivial random algorithm

64

Randomised Algorithms

Algorithm 9.2.1

Random maximum cutting algorithm. We essentially include each vertex in one of the partitions
with 12 probability.

A((G = U, V)):
 S = empty
 for v in V:
 if Ber(0.5):
 S = S union {v}
 return S

Let 𝑋𝑒 be indicator for edge 𝑒 being cut.

𝔼[number of edges cut] = ∑
𝑒∈𝐸

𝔼[𝑋𝑒] =
𝑚
2

Which is within a factor of 2 from optimal.

9.2.3 Randomised Minimum Cutting
Consider the opposite problem:

Definition 9.2.5

The maximum cut problem is as follows, with each being equivalent:

• Given graph 𝐺, colour vertices with two different colours (each used at least once), minimising
the number of edges with different coloured endpoints

• Partition 𝑉 into non-empty 𝑋 and 𝑌 , minimising the number of edges that go between 𝑋 and 𝑌
• Estimate how connected the graph is

This problem is in 𝘗 , but we will try to come up with some efficient polytime random algorithm.

65

Randomised Algorithms

Algorithm 9.2.2

Monte Carlo edge contraction algorithm for minimum cutting

Given 𝐺, start with empty 𝑆:

1. Pick radom edge 𝑒 and add it to 𝑆
2. Contract 𝑒 (allow multi-edge but not self-loop)
3. If |𝐸| > 2, repeat from 1, else return 𝑆

This is polytime by inspection. The number of iterations is 𝑛 − 2.

Success rate: (sketch) observe that at each step, a size 𝑘 cut in the contracted graph corresponds
to a size 𝑘 cut in the original graph. Also, the minimum cut at any point is upper bounded by the
graph’s max degree. Fix some minimum cutting 𝐹 , notice the algorithm returns 𝐹 iff it never con-
tracts any 𝑓 ∈ 𝐹 . Introduce 𝐸𝑖 as indicator for ∄𝑓 ∈ 𝐹, 𝑓 gets contracted at iteration 𝑖. Write
ℙ[algorithm returns 𝐹] = ℙ[∩𝑛−3

𝑖=0 𝐸𝑖]. Use chain rule and complements. Upper bound 𝑘
𝑚𝑖

 with
handshake lemma where 𝑚𝑖 is the number of edges left at iteration 𝑖.

This should come out to be

ℙ[algorithm returns 𝐹] = ∏
𝑛−3

𝑖=0
(1 −

2
𝑛 − 𝑖

) ≥
2

𝑛(𝑛 − 1)
≥

1
𝑛2

Fact 9.2.1

∀𝑥 ∈ ℝ, 1 + 𝑥 ≤ 𝑒𝑥

Once we have a 1
𝑛2 error rate algorithm, boosting it to a lower error rate is easy. Run it 𝑡 = 𝑛3 times,

the error rate becomes (1 − 1
𝑛2)𝑡 ≤ 𝑒− 𝑡

𝑛2 .

Strategy 9.2.1

Monte Carlo algorithms can usually be boosted by:

• Run many times and return best (in case of approximation / optimisation)
• Run many times and return the most common output (in case of decision problems)

66

Cryptography

Chapter 10: Cryptography

10.1 Modular Arithmetics

10.1.1 Many Definitions

Definition 10.1.1

𝑎 ∈ ℤ divides 𝑏 ∈ ℤ if ∃𝑞 ∈ ℤ, 𝑏 = 𝑞𝑎.

𝑎 | 𝑏 denotes 𝑎 divides 𝑏.

Definition 10.1.2

𝑝 ∈ ℕ, 𝑝 ≥ 2 is prime if its only positive divisors are 1 and 𝑝.

Definition 10.1.3

𝑎 ∈ ℤ is congurent to 𝑏 ∈ ℤ modulo 𝑛 ∈ ℤ if ∃𝑘 ∈ ℤ, 𝑎 = 𝑘𝑛 + 𝑏. We write 𝑎 ≡𝑛 𝑏.

An equivalent definition is that 𝑎 ≡𝑛 𝑏 ⇔ 𝑛 | (𝑏 − 𝑎)

Definition 10.1.4

Let 𝑎, 𝑏 ∈ ℤ

A 𝑐 ∈ ℤ is a common divisor of 𝑎 and 𝑏 if (𝑐 | 𝑎) ∧ (𝑐 | 𝑏).

A greatest common divisor of 𝑎 and 𝑏, denoted gcd(𝑎, 𝑏), is 𝑑 ∈ ℤ s.t.
• 𝑑 is a common divisor of 𝑎 and 𝑏
• 𝑑 can be divided by all other common divisors ∀𝑐 ∈ ℤ, (((𝑐 | 𝑎) ∧ (𝑐 | 𝑏)) ⇒ 𝑐 | 𝑑).

𝑎 and 𝑏 are coprime aka relative prime if gcd(𝑎, 𝑏) = 1.

10.1.2 More Definitions

Definition 10.1.5

Define ℤ𝑁 to be {𝑥 ∈ ℤ, 𝑥 < 𝑁} = {0, 1, …, 𝑁 − 1}.

67

Cryptography

Definition 10.1.6

Operations in ℤ𝑁 , indicated by subscript {+𝑁 , ⋅𝑁}, is defined as the operation then modulo.

Example 10.1.1

• 𝑎 +𝑁 𝑏 = (𝑎 + 𝑏) mod 𝑁
• 𝑎 ⋅𝑁 𝑏 = (𝑎 ⋅ 𝑏) mod 𝑁

The inverse of those operations, {−𝑁 , /𝑁}, would be defined as the inverse of the respective op-
eration.

Example 10.1.2

• 𝑎 −𝑁 𝑏 = 𝑎 +𝑁 −𝑏
• 𝑎/𝑁𝑏 = 𝑎 ∗𝑁 𝑏−1, if 𝑎−1 exists

Inverses and identities:

• Addictive identity of 𝑎 ∈ ℤ𝑛 is 0
• Addictive inverse of 𝑎 ∈ ℤ𝑛 is (−𝑎 mod 𝑛) ∈ ℤ
• Multiplicative identity of 𝑎 ∈ ℤ𝑛 is 0
• Multiplicative inverse of 𝑎 ∈ ℤ𝑛 is 𝑎−1 ∈ ℤ𝑛, 𝑎−1 ⋅𝑛 𝑎 = 1

Fact 10.1.1

Facts¹²

• (𝑎 + 𝑏) mod 𝑛 = (𝑎 mod 𝑛) +𝑛 (𝑏 mod 𝑛)
• (𝑎 ⋅ 𝑏) mod 𝑛 = (𝑎 mod 𝑛) ⋅𝑛 (𝑏 mod 𝑛)
• Multiplicative of 𝑎 ∈ ℤ𝑛 exists iff gcd(𝑎, 𝑛) = 1

¹²too lazy to prove them

Definition 10.1.7

Define ℤ∗
𝑁 to be the subset of ℤ𝑁 such that all elements have multiplicative inverse:

ℤ∗
𝑁 = {𝑥 ∈ ℤ𝑁 | gcd(𝑥, 𝑁) = 1}

Fact 10.1.2

ℤ∗
𝑁 is closed under multiplication¹³.

Also, if {𝑥1, …, 𝑥𝑚} = ℤ∗
𝑁 then forall 𝑥𝑖 ∈ ℤ∗

𝑁 , (𝑥𝑖 ⋅𝑁 𝑥1, …, 𝑥𝑖 ⋅𝑁 𝑥𝑚) is a pemutation of ℤ∗
𝑁 .

¹³also too lazy to prove

68

Cryptography

Definition 10.1.8

The Euler toient function 𝜑 returns the size of ℤ∗
𝑁 :

𝜑(𝑁) = |ℤ∗
𝑁 |

Fact 10.1.3

If 𝑃 , 𝑄 are distinct primes, 𝜑(𝑃𝑄) = (𝑃 − 1)(𝑄 − 1)

10.1.3 Modular Exponentiation

Definition 10.1.9

For 𝑎 ∈ ℤ𝑁 , 𝐸 ∈ ℤ, define 𝐴𝐸 to be 𝐴 multiplied together by ⋅𝑁 𝐸 times.

Theorem 10.1.1

Euler’s theorem

∀𝐴 ∈ ℤ∗
𝑁 , 𝐴𝜑(𝑁) = 1

equivalently,

∀𝐴, 𝑁 ∈ ℤ, gcd(𝐴, 𝑁) = 1 ⇒ 𝐴𝜑(𝑁) = 1

Fact 10.1.4

For 𝐴 ∈ ℤ∗
𝑁 , 𝐸 ∈ ℤ, 𝐴𝐸 ≡𝑁 𝐴𝐸 mod 𝜑(𝑁)

Corollary 10.1.1

Then we can think of the exponent as living in the ℤ𝜑(𝑁) universe since every other exponent
can be reduced to 𝐸 mod 𝜑(𝑁)

Definition 10.1.10

𝐴 ∈ ℤ∗
𝑁 is a generator if taking exponents of 𝐴 generates ℤ∗

𝑁 i.e.

{𝐴𝐸 | 𝐸 ∈ ℤ𝜑(𝑁)} = 𝑍∗
𝑁

10.1.4 Complexity of Modular Operations

Operation Complexity Comment
+𝑁 , −𝑁 poly
⋅𝑁 , /𝑁 poly

Check existence of 𝐵−1 poly By checking if gcd(𝐵, 𝑁) = 1 with Euclidean al-
gorithm

Compute 𝐵−1 poly with extended Euclidean algorithm

69

Cryptography

Compute 𝐴𝐸 poly via fast modular exponentiation
Compute log𝐵 𝐴 not known to be poly

Compute 𝐸
√

𝐴 not known to be poly

Algorithm 10.1.1

Extended Euclidean algorithm¹⁴

We find 𝑑, 𝑘, 𝑙 ∈ ℤ such that 𝑑 = gcd(𝑎, 𝑏) = 𝑘𝑎 + 𝑙𝑏

¹⁴can just look this up

Algorithm 10.1.2

Reduce finding multiplicative inverse to Extended Euclidean algorithm

Given 1 = gcd(𝐵, 𝑁) = 𝑘𝐵 + 𝑙𝑁 , we know 1 ≡𝑁 𝑘𝐵, so setting 𝐵−1 = 𝑘 works.

Algorithm 10.1.3

Fast modular exponentiation given 𝑁 ∈ ℕ, 𝐴 ∈ ℤ𝑁 , 𝐸 ∈ ℕ:

Use repeated squaring to get 𝐴2 mod 𝑁, 𝐴4 mod 𝑁, 𝐴8 mod 𝑁, … until sufficient.

Multiple together some subset of {A^2 mod N, A^4 mod N, A^8 mod N, …} so that the exponents
sum to 𝐸.

10.2 Private Key Encryption
Notation:

• 𝐾 = key
• 𝐶 = ciphertext
• 𝑀 = message

10.2.1 One-Time Pad
A simple encryption scheme that can only be used once (perfectly secure on the first message, but
reuse of key is insecure).

Algorithm 10.2.4

Encode and decode with one-time pad.

Encode:

1. Write 𝑀 ∈ {0, 1}𝑛

2. Generate uniform random key 𝐾 ∈ {0, 1}𝑛

3. Take 𝐶 = bitwise_xor(𝑀, 𝐾)

The ciphertext should be uniformly random in {0, 1}𝑛.

Decode:

1. Compute 𝑀 = bitwise_xor(𝐶, 𝐾)

70

Cryptography

10.2.2 Diffie-Hellman Key Exchange
A protocol to share secret key through public communication built upon the assumption that descrete
log in modular universe is hard.

Algorithm 10.2.5

Diffie-Hellman Key Exchange

The idea is that adversaries cannot undo exponentiation, so sending exponents of a number will
not leak the exponent.

A
• Choose some large prime 𝑝
• Choose some generator 𝐺 ∈ ℤ∗

𝑝 (so that 𝐺𝐸1 , 𝐺𝐸2 are uniform random)
• Compute 𝜑(𝑝) = (𝑝 − 1)
• Randomly pick some 𝐸1 ∈ ℤ𝜑(𝑝) (then exponents can be reduced by mod 𝜑(𝑝))
• Compute 𝐺𝐸1 ∈ ℤ∗

𝑝 with fast exponentiation
• Send out (𝑝, 𝐺, 𝐺𝐸1)

B
• Receives (𝑝, 𝐺, 𝐺𝐸1)
• Randomly pick some 𝐸2 ∈ ℤ𝜑(𝑝)
• Compute 𝐺𝐸2 ∈ ℤ∗

𝑝
• Compute 𝐾 = 𝐺𝐸1𝐸2 = (𝐺𝐸1)𝐸2 ∈ ℤ∗

𝑝
• Send back 𝐺𝐸2

A
• Receives 𝐺𝐸2

• Computes 𝐾 = 𝐺𝐸1𝐸2 = (𝐺𝐸2)𝐸1 ∈ ℤ∗
𝑝

Now both A and B have 𝐾 = 𝐺𝐸1𝐸2 .

Adversary
• Sees (𝑝, 𝐺, 𝐺𝐸1 , 𝐺𝐸2)
• No easy way to compute 𝐸1, 𝐸2, 𝐺𝐸1𝐸2

10.3 Public Key Encryption
Notation:

• 𝐾 = secret key
• 𝐾pub = public key
• 𝐾priv = private key
• 𝐶 = ciphertext
• 𝑀 = message

The goal is that public keys can encrypt messages so that they can be decrypted only by someone’s
private key.

10.3.1 ElGamal
Public-private key scheme using Diffie-Hellman secret key exchange.

71

Cryptography

Algorithm 10.3.6

ElGamal encryption scheme

A, B first perform Diffie-Hellman to get shared secret key 𝐾 = 𝐺𝐸1𝐸2 .

B (receiver)
• Recall 𝑝, 𝐺, 𝐸2
• Set 𝐾pub

𝐵 = (𝑝, 𝐺, 𝐸2)
• Publish 𝐾pub

𝐵

A
• Recall 𝑝, 𝐺, 𝐸1
• Write message 𝑀 ∈ ℤ∗

𝑝
• Encrypt by 𝐶 = 𝑀𝐺𝐸1𝐸2

• Send out 𝐶

B
• Receives 𝐶 = 𝑀𝐺𝐸1𝐸2

• Compute (𝐺𝐸1𝐸2)−1

• Decrypt by 𝑀 = 𝐶(𝐺𝐸1𝐸2)−1 = 𝑀𝐺𝐸1𝐸2(𝐺𝐸1𝐸2)−1

10.3.2 RSA
Public-key encryption scheme built upon the assumption that taking roots in modular universe is hard.

72

Cryptography

Algorithm 10.3.7

RSA encryption scheme

B (receiver)
• Pick distinct large primes 𝑃 , 𝑄
• Compute 𝑁 = 𝑃𝑄
• Pick 𝐸 ∈ ℤ∗

𝜑(𝑁)
• Compute 𝐸−1 ∈ ℤ∗

𝜑(𝑁)
• Set 𝐾priv = 𝐸−1

• Publish 𝐾pub = (𝑁, 𝐸)

A
• Obtain 𝐾pub = (𝑁, 𝐸)
• Write message 𝑀 ∈ ℤ∗

𝑁
• Encrypt by 𝐶 = 𝑀𝐸 ∈ ℤ∗

𝑁
• Send out 𝐶

B
• Receives 𝐶 = 𝑀𝐸 ∈ ℤ∗

𝑁
• Compute 𝐶𝐸−1 = 𝑀𝐸(𝐸−1) = 𝑀 ∈ ℤ∗

𝑁

Adversary
• Sees 𝑁 , but can’t factor it into 𝑃 , 𝑄 easily, and can’t compute 𝜑(𝑁) efficiently¹⁵¹⁶
• Sees 𝐸, 𝑀𝐸 , but can’t take root to get 𝑀 efficiently

¹⁵turns out prime factorisation is polytime iff computing 𝜑(𝑁) is polytime
¹⁶it is not proven that there is no way to decrypt without knowing 𝜑(𝑁), but no known polytime algorithm either

73

	Course Introduction
	A Computer Science Perspective
	Whats Theoretical Computer Science (TCS)
	Formalising computation
	Main Problems in TCS
	Math vs Cilantro

	A Mathematical Perspective
	Computers and Proofs
	From Good Old Regular Mathematics (GORM) to FORM
	Contributors to FORM and Their Ideas

	String, Encoding, and Language
	Mathematical Representation of Data
	Characters and Strings
	String Operations
	String Encoding

	Language
	Operations on Languages

	Computation as Function on Strings

	Deterministic Finite Automata
	Terminology
	Defining Deterministic Finite Automata (DFA)
	Language and DFA
	Formal Definition of DFA
	Applications of DFAs

	Regular and Non-Regular Languages
	Closure Properties of Regular Languages
	Recursive Definition of Regular Language

	Turing Machines (TMs)
	Preamble
	Coming Up with TMs (Modern Perspective)
	Coming Up with TMs (Turings Perspective)
	Key Differences Between DFAs and TMs

	Formal Definition of TMs
	Universality of Computation
	TM Subroutines, Tricks, and Description
	Universal Machines

	The Church-Turing Thesis
	Decidability
	Closure Properties of Decidable Languages
	Semi-Decidability

	Limits of Computation
	Limits of Counting
	Cantor and Infinite Sets
	Countable Sets
	Diagonalisation
	Uncountable Sets

	Limits of Computation
	Diagonalising Turing Machines
	Proving Undecidability by Reduction
	More Undecidable Languages
	Consequences of Undecidability
	Non-Semi-Decidable Decidable Languages

	Limits of Human Reasoning: Gödels Incompleteness Theorems
	FORM Essentials
	Proving Things About FORM
	Incompleteness Theorems

	Time Complexity
	Analysing Complexity
	Asymptotics
	Complexity Model
	Long Number Operations

	Graph Theory
	Undirected Graphs
	Neighbourhood
	Walks and Paths
	Connectedness

	Trees
	Mininum Spanning Tree (MST)
	Directed Graph
	Graph Search
	Any-First Search (AFS)
	Breadth-First Search (BFS)
	Depth-First Search (DFS)

	Graph Matching
	Maximum Matching
	Bipartite Graphs and k-Colourability

	Stable Matching
	Gale-Shapley Algorithm

	P vs NP
	Polynomial-Time Reduction
	Some Problems of Interest
	The P vs NP Problem
	Polynomial Time Reduction Methods

	Computational Hardness and Completeness
	Non-Deterministic Polynomial Time (NP)
	NP-Completeness

	Example Reductions

	Randomised Algorithms
	Probability Theory
	CS Approach to Probability Theory
	Probability Concepts to Know

	Randomised Algorithms
	Randomised Algorithms Definitions
	Randomised Maximum Cutting
	Randomised Minimum Cutting

	Cryptography
	Modular Arithmetics
	Many Definitions
	More Definitions
	Modular Exponentiation
	Complexity of Modular Operations

	Private Key Encryption
	One-Time Pad
	Diffie-Hellman Key Exchange

	Public Key Encryption
	ElGamal
	RSA

