$$
21-241
$$

Matrices and Linear Transformations
Spring 2023
At Carnegie Mellon University
Notes by Lómenoire Mortecc.

Lee 1

- Go read syllabus
- Go get textbook
- Go do canvas HW\#I
* The Fundamental Problem
\rightarrow Solving systems of linear equations

$$
\begin{array}{ccc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}= & b_{1} \\
\vdots & \vdots & \ddots \\
\vdots & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{2}
\end{array}
$$

They get hand if the system gets big.

* Equivalence

Def: two systems equivalent of they have same solution.
\# Allowed operations

1. Change order of equations
2. Multiply an equation by non-zero constant
3. Add multiple of one equation to anther

$$
\begin{aligned}
& \text { Ex. } \begin{array}{ll}
x+y=3 \\
x-\frac{1}{2} y=3
\end{array} \\
& \text { (1) } \mapsto(1)+(2)(2)
\end{aligned}\left\{\begin{array}{l}
3 x+\theta_{y}=9 \\
x-\frac{1}{2} y=3
\end{array}, ~\left\{\begin{array}{ll}
3 x+\theta_{y}=9 \\
x-\frac{1}{2} y=3 & \text { (1) } \mapsto\left(\frac{1}{3}\right)(1)
\end{array}\left\{\begin{array}{l}
x=3 \\
x-\frac{1}{2} y=3
\end{array}\right\}\right.\right.
$$

\# Nun of solutions

- None
- One unique solution
- Infinite mum of solutions
\# Why does operation 3 not change solutions? (not formal)
WTS: sol to old sys must be sol to new sys. Suppose $(x, y)=(a, b)$ is a sol

Then

$$
\begin{gathered}
x+y=3 \\
x-\frac{1}{2} y=3 \\
(x+y)+2\left(x-\frac{1}{2} y\right)=5+2(3)
\end{gathered}
$$

But

$$
\begin{aligned}
& a+b=3 \\
& a-\frac{1}{2} b=3
\end{aligned}
$$

So $(a+b)+2\left(a-\frac{1}{2} b\right)=9$.
WTS : new solution doesn't have extra solution.
Idea: any type 3 solution can be reversed with another type 3 operation.

$$
\begin{aligned}
& \left\{\begin{array} { l l }
{ x + y = 3 } & { \text { (1) } \mapsto (1) + (2) (2) } \\
{ x - \frac { 1 } { 2 } y = 3 } & { }
\end{array} \left\{\begin{array}{l}
3 x+\theta_{y}=9 \\
x-\frac{1}{2} y=3
\end{array}\right.\right. \\
& \left\{\begin{array} { l l }
{ 3 x + \theta _ { y } = 9 } & { \text { (1) } \mapsto (1) + (- 2) (2) } \\
{ x - \frac { 1 } { 2 } y = 3 } & { }
\end{array} \left\{\begin{array}{l}
x+y=3 \\
x-\frac{1}{2} y=3
\end{array}\right.\right.
\end{aligned}
$$

\# How to make syss easier to solve?
Trying to isolate one variable in each row.

$$
\begin{aligned}
& \begin{aligned}
x-y-z=1 & (2) \leftrightarrow(2)+(-2)(1) & x-y-z=1 \\
2 x-y-z=3 & \longrightarrow & -y+z=1
\end{aligned} \\
& 2 x-3 y-z=3 \quad-y+z=1 \\
& -x+y-z=-3 \quad-x+y-z=-3 \\
& \downarrow \text { (3) } \rightarrow(3)+(1) \text { (1) } \\
& x-y-z=1 \quad \text { (3) } \mapsto\left(-\frac{1}{2}\right)(3) \\
& -y+z=1 \\
& z=1 \\
& \longleftarrow \\
& x-y-z=1 \\
& -y+z=1 \\
& -2 z=-2 \\
& \text { (2) } \rightarrow \text { (2) }+(-1) \text { (3) } \\
& \downarrow \text { (1) } \rightarrow \text { (1) }+(1)(3) \\
& \begin{aligned}
x-y & =2 \\
-y & =0
\end{aligned} \\
& z=1 \\
& x \quad=2 \\
& y=0 \\
& z=1
\end{aligned}
$$

