21-241

Matrices and Linear Transformations

Spring 2023 At Carnegie Mellon University Notes by Lómenwirë Mortecc.

- Go read sullabus - Go get textbook - Go do cauvas HW#1
- * The Fundamental Problem
 - → Selving systems of linear equations a₁₁ × 1 + a₁₂ × 2 + ··· + a₁₁₁ × n = b₁ : : : : : : : a_{m1} × 1 + a_{m2} × 2 + ··· + a_{mn1} × n = b₂ They get hard of the system gets big.
- # Equivalence

Def: two systems equivalent if they have same solution.

- # Allowed operations
 - 1. Change order of equations 2. Multiply on equation by non-zero constant 3. Add multiple of one equation to another $\begin{bmatrix} Ex. & & & & Easier to solve \\ & & & & & \\ & & & & \\ & & & & &$
- Num of Solutions
 None
 One unique solution
 Infinite num of solutions

* Why does operation 3 not change solutions? (not formal)
WTS: sol to oble sys must be sol to new sys.
Suppose
$$(x,y) = (a,b)$$
 is a sol
Then
 $x+y = 3$
 $x-\frac{1}{2}y=3$
 $(x+y)+x(x-\frac{1}{2}y) = 5+2(3)$ but $a+b=3$
 $(x+y)+2 = 3$ but $(x+y)+2 = 3$
 $(x+y)+2 = 3$
 $(x+y)+2 = 3$ but $(x+y)+2 = 3$
 $(x+y)+2 = 3$