$\|$ Ex.
Augmented Matrix

$$
\left[\begin{array}{ccccc}
1 & -2 & -2 & 3 & 1 \\
-2 & -4 & 4 & 2 & 6 \\
0 & 0 & 4 & 8 & 6
\end{array}\right]
$$

\int Good enough for backselving from bottom Not unique, but position of $\left[\begin{array}{ccccc}1 & -2 & -2 & 3 & 1 \\ 0 & 0 & 4 & 8 & 6 \\ 0 & 0 & 0 & 8 & 8\end{array}\right] *$ Row echelon form! L Leading entries is unique
$\frac{x_{1}}{T} \frac{x_{2}}{T} \frac{x_{3}}{1} \frac{x_{4}}{1}$ Leading variables solve for these

$$
\begin{aligned}
& \text { Free variable } \leftarrow \text { in terms } \\
& \text { * Reduced row echelon form }
\end{aligned}
$$

\# Vector Spaces
Let $\mathbb{R}^{n}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right], \quad x: \in \mathbb{R}$ for $i=1, \cdots, n$

- Vector addition
- Scaler multiplication
* Linear combinatican - $\underbrace{c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{k} v_{k}}_{1}$ with $\vec{v}_{i} \in \mathbb{R}^{n}$ and $c_{i} \in \mathbb{R}$ finite expression

$$
\begin{aligned}
& {\left[\right]} \\
& \text { - Leading entries all } 1 \mathrm{~s} \\
& \text { - All Os above leading entries } \\
& \downarrow \\
& \begin{array}{l}
x_{1}=-3-2 x_{2} \quad \int \text { Solution } \\
x_{3}=-\frac{1}{2}
\end{array} \quad \int \begin{array}{l}
\text { S }
\end{array} \\
& x_{4}=1
\end{aligned}
$$

