Lee 4

* Theorem: Algebraic properties of \mathbb{R}^{n}.

If $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$ and $c, d \in \mathbb{R}$ and $\vec{o} \in \mathbb{R}^{n}$ is a zero vector.
Then:

- $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
- $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$
- $\vec{u}+\overrightarrow{0}=\vec{u}$
- $\vec{u}+(-\vec{u})=\overrightarrow{0}$
- $c(\vec{u}+\vec{v})=c \vec{u}+c \vec{v} \quad$ - $(c+d) \vec{u}=c \vec{u}+d \vec{u} \quad$. \quad Different addition!

Sometimes \oplus to indicate vector addition

- $c(d \vec{u})=(c d) \vec{u}$
\# Vector Space

$$
:=(V, \oplus, \odot)
$$

$\mathrm{V}:=$ set of vectors that satisfies these axioms :
$\forall \vec{u}, \vec{v}, \vec{w} \in V, \forall c, d \in R$,

1. V is closed under addition i.e. $\vec{u} \oplus \vec{v} \in V$
2. $\vec{u} \oplus \vec{v}=\vec{v} \oplus \vec{u}$
3. $(\vec{u} \oplus \vec{v}) \oplus \vec{w}=\vec{u} \oplus(\vec{v} \oplus \vec{w})$
4. $\exists \vec{o} \in V, \vec{u} \oplus \vec{O} \in V$
5. $\exists-\vec{u} \in V, \vec{u} \oplus(-\vec{u})=\overrightarrow{0}$
6. $c \odot \vec{u} \in V \in$ closed under scalar mut
7. $c \odot(\vec{u} \oplus \vec{v})=c \odot \vec{u}+c \odot \vec{v}$
8. $(c+d) \odot \vec{u}=c \odot \vec{u}+d \odot \vec{u}$
9. $c \odot(d \odot \vec{u})=(c d \odot \vec{u})$
10. $1 \odot \vec{u}=\vec{u}$
(1): $=$ addition rule
© : = scalar mull rule
Ex. Consider $P=\{$ polynomials in x with real coefficients $\}$
Let

$$
\begin{aligned}
& p=a_{0}+a_{1} x^{\prime}+\cdots+a_{n} x^{n} \\
& q=b_{0}+b_{1} x^{\prime}+\cdots+b_{m} x^{m}
\end{aligned}
$$

Define \oplus by

$$
p \oplus q=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x^{\prime}+\cdots \text { [normal way] }
$$

() by

$$
c \odot p=\left(c a_{0}\right)+\left(c a_{1}\right) x^{\prime}+\cdots+\left(c a_{n}\right) x^{n}
$$

Lemma: $(P, \oplus,())$ is a vector space
Let $V=P$, UTs:
$\forall \vec{u}, \vec{v}, \vec{w} \in V, \quad \forall c, d \in \mathbb{R}$,

1. V is closed under addition i.e. $\vec{u} \oplus \vec{v} \in \mathrm{~V}$
2. $\vec{u} \oplus \vec{v}=\vec{v} \oplus \vec{u}$
3. $(\vec{u} \oplus \vec{v}) \oplus \vec{w}=\vec{u} \oplus(\vec{v} \oplus \vec{w})$
4. $\exists \vec{o} \in V, \vec{u} \oplus \vec{o} \in V$
5. $\exists-\vec{u} \in V, \vec{u} \oplus(-\vec{u})=\overrightarrow{0}$
6. $c \odot \vec{u} \in V \leftarrow$ closed under scalar mut
7. $c \odot(\vec{u} \oplus \vec{v})=c \odot \vec{u}+c \odot \vec{v}$
8. $(c+d) \odot \vec{u}=c \odot \vec{u}+d \theta \vec{u}$
9. $c \odot(d \odot \vec{u})=(c d \odot \vec{u})$
10. $1 \odot \vec{u}=\vec{u}$

Proof [omitted].

Ex. Another vector space
Let $\mathcal{F}=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$
Let $f, g \in \mathcal{F}$
Define \oplus, \odot :

- $(f \oplus g)(x)=f(x)+g(x)$
- $(c \circ f)(x)=c \cdot f(x)$

Then can prove all those props

