Lec 5

* Connecting systems with a variables and \mathbb{R}^n Ex. 2x - y = 1 @ Suppose $(x, y) = (\alpha, \beta)$ is a solution x + y = 5 @ Then (α, β) can be a vector in \mathbb{R}^2 . coluctuous to @ (22,3) (22,3) (30) (22,3) (30) (22,3) (30) (31) (3

In R3

Intersection between 3 planes \leftarrow Row picture Linear combination \leftarrow Column picture $\begin{bmatrix} a_i \\ a_2 \\ a_3 \end{bmatrix} + y \begin{bmatrix} b_i \\ b_2 \\ b_3 \end{bmatrix} + z \begin{bmatrix} c_i \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} d_i \\ d_2 \\ d_3 \end{bmatrix}$ Dot products?

$$n_{1} = \begin{bmatrix} a_{1} \\ b_{1} \\ c_{1} \end{bmatrix} \begin{array}{c} n_{2} = \begin{bmatrix} a_{2} \\ b_{2} \\ c_{2} \end{bmatrix} \\ n_{3} = \begin{bmatrix} a_{3} \\ b_{3} \\ c_{3} \end{bmatrix} \\ v = \begin{bmatrix} x \\ y \\ y \\ z \end{bmatrix} \\ n_{2} \cdot v = d_{2} \\ n_{3} \cdot v = d_{3} \end{array}$$
 "Normal form"

Generic case

$$a_{11} \times 1 + \cdots + a_{1m} \times m = b_1$$
 — Row picture is in \mathbb{R}^m
 \vdots \vdots \uparrow
 $a_{n1} \times 1 + \cdots + a_{nm} \times m = b_n$ If $n = m$, we say the system is in
 $|$
 $column$ picture is in \mathbb{R}^n

Vector form:

Dot product properties

Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$, $c \in \mathbb{R}$, then 1. $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$ 2. $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$ 3. $(c\vec{u}) \cdot \vec{v} = c(\vec{u} \cdot \vec{v})$ 4. $\vec{u} \cdot \vec{u} \ge 0$