Lee 6
\# More properties of vector spaces
Let V be a vector space (ie. $(v,+,$.$)). Then:$

1. $\mathbf{0} \cdot \mathbf{u}=\overrightarrow{0} \leftharpoonup \overrightarrow{0}$ is the zero vector in V
2. $c \cdot \overrightarrow{0}=\overrightarrow{0}$
3. $(-1) \vec{u}=-\vec{u}$
4. c. $\vec{u}=\overrightarrow{0} \Rightarrow(c=0 \vee u=\overrightarrow{0})$

Proof

1. $0 \cdot \vec{u}=0 \cdot \vec{u}+\overrightarrow{0}=0 \cdot \vec{u}+(\vec{u}-\vec{u})=(0 \cdot \vec{u}+\vec{u})+(-\vec{u})=(0 \cdot \vec{u}+1 \cdot \vec{u})+(-\vec{u})$

$$
=(0+1) \cdot \vec{u}+(-\vec{u})=\vec{u}-\vec{u}=0 .
$$

\# A few more other vector spaces $\leftarrow A$ set with structure
Seen: \mathbb{R}^{n}, P (polynomials), $\mathcal{F}=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$

* $P_{n}=\{$ polynomials with degree less than or equal to $n\}$
* $\mathcal{C}^{0}(\mathbb{R})=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f$ is continuous $\}$
* $C^{\prime}(\mathbb{R})=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f$ differentiable and has contiumons derivative $\}$
\# Linear Transformation $~ M a p$ between vector spaces that preserve structure
Let V, W be vector spaces. a linear transformation $T: V \rightarrow W$ for all $\vec{u}, \vec{v} \in V$ and $c \in \mathbb{R}$ s..

1. $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$
2. $T(c \cdot \stackrel{\rightharpoonup}{u})=c \cdot T(\vec{u})$

Ex. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ via $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}+x_{2} \\ x_{1}-x_{2} \\ 2 x_{1}+3 x_{2}\end{array}\right]$. Show it's a lunar transformation

$$
\left.\begin{array}{rl}
T(\vec{u}+\vec{v}) & =T\left(\left[\begin{array}{l}
u_{1}+v_{1} \\
u_{2}+v_{2}
\end{array}\right]\right)=\left[\begin{array}{l}
\left(u_{1}+v_{1}\right)+\left(u_{2}+v_{2}\right) \\
\left(u_{1}+v_{1}\right)-\left(u_{2}+v_{2}\right) \\
2\left(u_{1}+v_{1}\right)+3\left(u_{2}+v_{2}\right)
\end{array}\right] \\
\cdots & =T\left(\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]\right)+T\left(\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]\right)=T(\vec{u})+T(\vec{v})
\end{array}\right], \quad=\left[\begin{array}{l}
\text { omitted }
\end{array}\right.
$$

Ex. Let $D: \varphi^{\prime}(\mathbb{R}) \rightarrow \varphi^{0}(\mathbb{R})$ via $D(f)=f^{\prime}$. Show D satisfies 1,2 .

$$
\text { 1. } \begin{array}{rlrl}
D(f \oplus g)(x) & =(f \oplus g)^{\prime}(x) & \text { 2. } D(c \odot f)(x) & =(c \odot f)^{\prime}(x) \\
& =\frac{d}{d x}(c f(x)) \\
& =\frac{d}{d x}\left((f \oplus g)^{\prime}(x)\right) & & =c \odot \frac{d}{d x}(f(x)) \\
& =\frac{d}{d x}(f(x)+g(x)) & & =c \circ D(f)(x) \\
& =f^{\prime}(x)+g^{\prime}(x) \\
& =(D(f) \oplus D(g))(x) &
\end{array}
$$

\# Transformation and standard basis vectors
EX. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is L.T. (linear transformation) and

$$
\begin{aligned}
& T\left(e_{1}\right)=T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
1 \\
2
\end{array}\right] \\
& T\left(e_{1}\right)=T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right]
\end{aligned}
$$

Then $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=T\left(x\left[\begin{array}{l}1 \\ 0\end{array}\right]+y\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$

$$
\begin{aligned}
& =T\left(x\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+T\left(y\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
& =x T\left(e_{1}\right)+y T\left(e_{2}\right) . \leftarrow \begin{array}{l}
\text { Completely determined by } \\
\text { The } 1) \text { and } T\left(e_{2}\right) .
\end{array}
\end{aligned}
$$

\# Matrix way (brief look)
A be $m \times n$ matrix, $v \in \mathbb{R}^{n}$, then

$$
A_{v}=v_{1}\left[\begin{array}{c}
1 \\
A_{-1} \\
1
\end{array}\right]+v_{2}\left[\begin{array}{c}
1 \\
A_{-2} \\
1
\end{array}\right]
$$

