Les 7

* Alt defunction for L.T.
$T: V \rightarrow W$ is L.T. If

$$
\forall v_{1}, \ldots, v_{k} \in V, c_{1}, \ldots, c_{k} \in \mathbb{R}, T\left(c_{1} v_{1}+\ldots+c_{k} v_{k}\right)=c_{1} T\left(v_{1}\right)+\ldots+c_{k} T\left(v_{k}\right)
$$

* Matrix for L.T.

Ex. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a $L T$ and

$$
T\left(e_{1}\right)=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] \quad T\left(e_{2}\right)=\left[\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right]
$$

Then $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{cc}1 & 1 \\ 1 & -1 \\ 2 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$

Matrix multiplication.

$$
A_{v}=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]=v_{1}\left[\begin{array}{c}
a_{11} \\
\vdots \\
a_{m_{1}}
\end{array}\right]+\cdots+v_{n}\left[\begin{array}{c}
a_{1 n} \\
\vdots \\
a_{m n}
\end{array}\right]
$$

Sometimes we think of each colure
as a vector. as a vector.
\# Matrix properties
Let A be matrix, $u, v \in \mathbb{R}^{n}, c \in \mathbb{R}$. Then

$$
\begin{aligned}
& \text { 1. } A(u+v)=A_{u}+A_{v} \\
& \text { 2. } A(c u)=c A_{u}
\end{aligned}
$$

So - matrix multiplications are L.T.S. Namely $T(x)=A x, T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ there's bijection between L.T. and the matrix multiplication
\# Some special L.T.
For any vector spacial V:

- The zero transformation $T_{0}: V \rightarrow V$ vie $T_{0}(v)=\vec{O}_{v}$
- Identity transformation $I: V \rightarrow V$ via $T_{0}(v)=v$.
\# L.T. compositions.
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, S: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$
Then $(S \circ T)(u)=B\left(A_{u}\right)$

