$\operatorname{Lec} 9$

- Midterm next Wed!
- Picking up from matrix multiplication
\# Another way to think about matrix null

$$
\begin{aligned}
& A B=\left[a_{i j}^{m \times p}\right]_{i, j}\left[b_{i j}^{p \times n}\right]_{i, j}=\left[\sum_{k=1}^{p} a_{i k} b_{k j}\right]_{i, j} \\
& {\left[\begin{array}{ccc}
\cdot & \cdot & \cdot \\
\bullet \cdot & \cdot \\
\bullet \cdot & \cdot & \cdot
\end{array}\right]\left[\begin{array}{lll}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right]=\left[\begin{array}{ccc}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right]} \\
& \Rightarrow A B=\left[\begin{array}{c}
-r_{1}^{\top}- \\
\vdots \\
-r_{m}^{\top}-
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
c_{1} & \cdots \\
1 & \\
1 & 1
\end{array}\right]=\left[r_{i} \cdot c_{j}\right]_{i, j}
\end{aligned}
$$

\# Identity matrix
In is an $n \times n$ matrix that looks like:
$I_{n}=\left[\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & 1 & - & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \quad$ then $A I_{n}=A$ and $I_{n} B$
\# Matrix addition \& scaler mull

$$
\begin{aligned}
& A+B=\left[a_{i j}^{m \times n}\right]_{i, j}+\left[b_{i j}^{m \times n}\right]_{i, j}=\left[a_{i j}^{m \times n}+b_{i j}\right]_{i, j} \\
& C A=c\left[a_{i j}\right]_{i, j}=\left[c a_{i j}\right]_{i, j}
\end{aligned}
$$

\# Zero matrix

$$
\boldsymbol{O}_{n x m}=\left[\begin{array}{cccc}
& n \times m \\
0 & 0 & \cdots & 0 \\
0 & 0 & - & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

* Algebra with Matrix

Let A, B, C be mon matrix and $c, d \in \mathbb{R}$.

1. $B+A=A+B$
2. $(A+B)+C=A+(B+C)$
3. $A+O_{\text {man }}=A$
4. $\exists_{-A_{\text {man }}}, A+(-A)=0_{\text {m }}$ n
5. $c(A+B)=c A+c B$
6. $(c+d) A=c A+d A$
7. $I A=A$
\rightarrow Hmm this lodes a lot like vector axioms..; what if we say $\mathbb{R}^{m \times n}$ is a vector space of all $m \times n$ matrices
Meanwhile, matrix muls: assume type check dim check passes.
8. $(A B) C=A(B C)$
9. $A(B+C)=A B+A C$
10. $(A+B) C=A C+B C$
11. $k(A B)=(k A) B$
12. $I_{m} A_{m \times n}=A=A_{m \times n} I_{n}$

Notice that:

1. $A(B+C)=A B+A C$
2. $k(A B)=(k A) B=A(k B)$

So matrix transformation is L.T.

