

Recall some props of matrix maul

1. $A(B+C)=A B+A C$
2. $k(A B)=(k A) B=A(k B)$

Proof [omitted]. simili for the other props
\# Transpose properties

1. $(A+B)^{\top}=A^{\top}+B^{\top}$
2. $(k A)^{\top}=k\left(A^{\top}\right)$
3. $(A B)^{\top}=B^{\top} A^{\top}$
4. $\left(A^{n}\right)^{\top}=\left(A^{\top}\right)^{n} \leftarrow$ induction!
$\rightarrow(A B)^{\top}=\left(\left[\begin{array}{c}m \times n \\ -r_{1}{ }^{\top}- \\ \vdots \\ -r_{m}^{\top}-\end{array}\right]\left[\begin{array}{ccc}1 & 1 \\ c_{1} & \cdots & c_{p} \\ 1 & 1\end{array}\right]\right)^{\top}$
11

$$
\left(\left[r_{j} \cdot c_{i}\right]_{i, j}\right)^{\top}
$$

11

$$
\left[c_{i} \cdot r_{j}\right]_{j, i}
$$

11

$$
\left[\begin{array}{c}
p \times n \\
-c_{1}^{\top}- \\
\vdots \\
-c_{p}^{\top}-
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 \\
r_{1} & \cdots & r_{m} \\
1 & & 1
\end{array}\right]=B^{\top} A^{\top}
$$

\# Representations of matrix mull

* Def:

$$
A B=\left[a_{i j}\right]_{i, j}\left[b_{i j}\right]_{i, j}=\left[\sum_{\ell=1}^{n} a_{i \ell b_{\ell j}}\right]_{i, j}
$$

* Row - Col Rep

$$
A B=\left[\begin{array}{c}
-r_{1}^{\top}- \\
\vdots \\
-r_{m}^{\top}
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 \\
c_{1} & \cdots & c_{p} \\
1 & & 1
\end{array}\right]=\left[r_{j} \cdot c_{i}\right]_{i, j}
$$

* Matrix - Col Rep

Every $j^{\text {th }}$ col of $A B$ looks like:

$$
\left[\begin{array}{c}
-r_{1}{ }^{\top}- \\
\vdots \\
-r_{m}{ }^{\top}-
\end{array}\right] c_{j}
$$

whole thing:

$$
A B=\left[\begin{array}{ccc}
1 & 1 \\
A_{c,} & \cdots & A_{c p} \\
1 & & 1
\end{array}\right] \quad \text { Com think of as } L . T \text { to each } c \text { col }
$$

* Col-Row Rep

$$
A B=\left[\sum_{\ell=1}^{n} a_{i l b \ell j}\right]_{i, j}=\sum_{\ell=1}^{n}\left[a_{i l b \ell j}\right]_{i, j}
$$

Basically...

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\bullet \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\bullet & \cdot & \cdot
\end{array}\right]}
\end{aligned}
$$

* Row - Matrix Rep

$$
A B=\left[\begin{array}{c}
-r_{1}^{\top}- \\
\vdots \\
-r_{m}^{\top}-
\end{array}\right] B=\left[\begin{array}{c}
-r_{1}^{\top} B- \\
\vdots \\
-r_{m}^{\top} B-
\end{array}\right]
$$

* Termilogy

Consider $v, w \in \mathbb{R}^{n}$. We know $v \cdot w \in \mathbb{R}$
|x|! These we call "inner product"
Also $\quad A_{1 \times n} B_{n \times 1}=\left[\begin{array}{c}2 \\ x\end{array}\right]$
$A_{n \times 1} B_{1 \times n}=C_{n \times n}$ - we call that "outer product"

