$\operatorname{Lec} 13$

$$
\begin{aligned}
\text { Ex } \quad A=\left[\begin{array}{ll}
2 & 5 \\
1 & 4
\end{array}\right]\left[A: I_{2}\right]=\left[\begin{array}{llll}
2 & 5 & 1 & 0 \\
1 & 4 & 0 & 1
\end{array}\right] & \rightarrow\left[\begin{array}{cccc}
1 & 4 & 0 & 1 \\
0 & -3 & 1 & -2
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccc}
1 & 4 & 0 & 1 \\
0 & 1 & -\frac{1}{3} & \frac{2}{3}
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & \frac{4}{3} & -\frac{5}{3} \\
0 & 1 & -\frac{1}{3} & \frac{2}{3}
\end{array}\right] \\
& \Rightarrow A^{-1}=\left[\begin{array}{cc}
\frac{4}{3} & -\frac{5}{3} \\
-\frac{1}{3} & \frac{2}{3}
\end{array}\right]
\end{aligned}
$$

\# Determinants (of square matrix)
\rightarrow Determines of inverse exists
\rightarrow Teths us some other stuff
Let $A_{2 \times 2}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \quad$ Measures anear of Give

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c
$$

\leftarrow is zero if L.T. squeezes
everything onto a line everything onto a line

\# Axioms of determinant.

1. $\operatorname{det}\left[I_{n}\right]=1$

We were thinking about
2. swap 2 row of matrix \Rightarrow dot changes sign area. But there might be other things that satisfy these props

Actually works for all rows.
Think: area is linear func of row when other rows are fixed.
\# Generalise 3 to every now [see proposition 5.5]
\# Proportion 4 : If two rows of A is zero, then $\operatorname{det} A=0$
Proof: interchanging those two rows does n't change matrix.
By 2, $\operatorname{det} A=-\operatorname{det} A$. then $\operatorname{det} A=0$.
\rightarrow generalises to other rows too
\# Proposition 5: (1) $\mapsto+\lambda(1)$ for some i that's not first row doesn't change det.

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{c}
\left(r_{1}+t r_{i}\right)^{\top} \\
r_{2}{ }^{\top} \\
\vdots \\
r_{n}{ }^{\top}
\end{array}\right] & \left.=\operatorname{det}\left[\begin{array}{c}
r_{1}{ }^{\top} \\
r_{2}{ }^{\top} \\
\vdots \\
r_{n}{ }^{\top}
\end{array}\right]+t \operatorname{det}\left[\begin{array}{c}
r_{i}{ }^{\top} \\
r_{2}{ }^{\top} \\
\vdots \\
r_{n}{ }^{\top}
\end{array}\right]\right] \text { repeated rows } \\
& =\operatorname{det}\left[\begin{array}{c}
r_{1}{ }^{\top} \\
r_{2}{ }^{\top} \\
\vdots \\
r_{n}{ }^{\top}
\end{array}\right]+0
\end{aligned}
$$

