Lee 14

Recall properties of determinants from last lee.

* How elem row ops affect dot
since tet is 2.T. from now when others are freed.

1. Interchange two rows \rightarrow mull dat by -1
2. Mud one row by non-zero cost \rightarrow mul by that constant
3. Add mil of one row to another \rightarrow mull by 1
\# Property 6: if $A_{n \times n}$ has a row of zeros, $\operatorname{det} A=0$
Proof: we can add another row to the zeros row without changing $\operatorname{det} A$ then we have repeated rows $\Rightarrow \operatorname{det} A=0$
(edge case: $[0]$ in which we can't swap rows, so use L.T. angmment)
\# Property 7: if $A_{\text {non }}$ is upper triangular, then $\operatorname{det} A$ is product of entries on the main diagonal

Proof
Case 1: $d_{1}, \ldots, d_{n} \neq 0$. Do: add mil of each row to

$$
\operatorname{det}\left[\begin{array}{ccc}
d_{1} & d_{2} & * \\
& d_{2} & \\
0 & \ddots & d_{n}
\end{array}\right]=\prod_{i=1}^{n} d_{i}
$$ the row above to get

$$
A^{\prime}=\left[\begin{array}{ccc}
d_{1} & & \\
& d_{2} & 0 \\
0 & \ddots & d_{n}
\end{array}\right]
$$

So $\operatorname{det} A=\operatorname{det}^{-1} A^{\prime}$

$$
\begin{aligned}
& =d_{1} \operatorname{det}\left[\begin{array}{lll}
1 & & \\
& d_{2} & 0 \\
0 & & d_{n}
\end{array}\right] \\
& =d_{1} d_{2} \operatorname{det}\left[\begin{array}{lll}
1 & & 0 \\
& 1 & 0 \\
0 & & d_{n}
\end{array}\right] \\
& =d_{1} \cdots d_{n} \operatorname{det}\left[\begin{array}{lll}
1 & & 0 \\
& 1 & \ddots \\
0 & & 1
\end{array}\right] \\
& =d_{1} \cdots d_{n}
\end{aligned}
$$

Case 2. some d_{i} is 0 . Then add mull of row to another to get a row of all zeros

$$
A^{\prime}=\left[\begin{array}{ccc}
d_{1} & & 0 \\
& 0 & \\
0 & & d_{n}
\end{array}\right]
$$

We know $\operatorname{det} A^{\prime}=0=\operatorname{det} A$

$$
\Rightarrow \operatorname{det} A=d_{1} \ldots d_{n}
$$

Ex.

$$
\begin{aligned}
A=\left[\begin{array}{ccc}
0 & 2 & -4 \\
3 & 0 & -3 \\
1 & 4 & 5
\end{array}\right] \quad \operatorname{det} A & =(-1)\left[\begin{array}{ccc}
1 & 4 & 5 \\
3 & 0 & -3 \\
0 & 2 & -4
\end{array}\right]=(1)(-1)\left[\begin{array}{ccc}
1 & 4 & 5 \\
0 & -12 & -18 \\
0 & 2 & -4
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 4 & 5 \\
0 & 2 & -4 \\
0 & -12 & -18
\end{array}\right]=(2)(-1)(1)(-1)\left[\begin{array}{ccc}
1 & 4 & 5 \\
0 & 1 & -2 \\
0 & -12 & -18
\end{array}\right] \\
& =\underbrace{(1)(2)(-1)(1)(-1)}\left[\begin{array}{ccc}
1 & 4 & 5 \\
0 & 1 & -2 \\
0 & 0 & -42
\end{array}\right]=-84
\end{aligned}
$$

interestingly, these are determinants of the elem matrices for our operations

* $\operatorname{rref}(A)=\operatorname{In}_{n} \Leftrightarrow \operatorname{det}(A) \neq 0 \Leftrightarrow \exists A^{-1} \Rightarrow$ " A is non-singular."
* $\operatorname{rref}(A) \neq I_{n} \Leftrightarrow \operatorname{det}(A)=0 \Leftrightarrow \nexists_{A^{-1}} \Rightarrow$ "A is singular"

