$\operatorname{Lec} 18$
\# Eigenvalues \& Eigenvectors

* Useful for computation. visualising L.T., solving some differ, hedging bond portfolios, etc.

If $A_{n \times n}$ and $x \in \mathbb{R}^{n}, x \neq \overrightarrow{0}$ sit. $A x=\lambda x$ f.s. $\lambda \in \mathbb{R}$.
Then λ is an eigenvalue of A and x is an eigenvector of A with that eigenvalue. \hookrightarrow German, means seffreference?

Eigenvector equation : $A x=\lambda x$
Funding x :

$$
\begin{aligned}
& A x-\lambda\left(I_{n} x\right)=0 \\
& A x-\left(\lambda I_{n}\right) x=0 \\
& \left(A-\lambda I_{n}\right) x=0
\end{aligned}
$$

must not be invertible, else $x=0$, not what we wont.

$$
\Rightarrow \operatorname{det}\left(A-\lambda I_{n}\right)=0
$$

$$
\downarrow
$$

then solve for λ
E_{x}.

$$
\begin{gathered}
A=\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right] \quad A-\lambda I_{2}=\left[\begin{array}{cc}
3-\lambda & 1 \\
1 & 3-\lambda
\end{array}\right] \\
\operatorname{det}\left(A-\lambda I_{2}\right)=(3-\lambda)^{2}-1^{2}=0 \\
3-\lambda= \pm 1
\end{gathered}
$$

$$
\lambda_{1}=2, \lambda_{2}=4 \Leftarrow \text { multiple eigenval possible. }
$$

Solve: $\left(A-2 I_{2}\right) x=0$,

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] x=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
x=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

$$
\begin{aligned}
\left(A-4 I_{2}\right) x & =0 \\
{\left[\begin{array}{rr}
-1 & 1 \\
1 & -1
\end{array}\right] x } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
x= & t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

$$
\text { but } x \neq 0 \text {, so }
$$

but $x \neq 0$, so

$$
x=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \text { with } t \neq 0
$$

$$
x=t\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { w th } t \neq 0
$$

Def. $\operatorname{det}\left(A-\lambda I_{n}\right)$ is characteristic polynomial for $A_{n \times n}$

Thm if A triangular, entries on main diagonal are the eigervalues. If Comsider

$$
\begin{aligned}
& A=\left[\begin{array}{llll}
d_{1} & & & \\
& d_{2} & * \\
0 & \ddots & \\
& & d_{n}
\end{array}\right] \\
& \operatorname{det}\left(A-\lambda I_{n}\right)=\left\lvert\, \begin{array}{cccc}
d_{1}-\lambda & & & \\
& d_{2}-\lambda & & * \\
0 & & \ddots & \\
0 & & \\
& & =\left(d_{1}-\lambda\right)\left(d_{2}-\lambda\right) & \cdots\left(d_{n}-\lambda\right) .
\end{array}\right. \\
& \operatorname{det}\left(A-\lambda I_{n}\right)=0 \Rightarrow \lambda=d_{1}, d_{2}, \ldots, \text { or } d_{n}
\end{aligned}
$$

Thm $A_{n \times n}$ is invertible iff 0 is not an eigenval
Pf A invertible if $\operatorname{det}(A) \neq 0$.

$$
\begin{aligned}
O \text { not eigenval of } A & \Leftrightarrow \operatorname{det}\left(A-O I_{n}\right) \neq 0 \\
& \Leftrightarrow \operatorname{det}(A) \neq 0
\end{aligned}
$$

Thm Let $A_{n \times n}$ with eigenual λ and corresponding eigenvec x. Then:

1. $\forall n \in \mathbb{Z}^{+}, \lambda^{n}$ is e-val of A^{n} wr e-vec x
2. If $\exists A^{-1}, 1 / \lambda$ is e-val of A^{-1} wr e-vec x
3. If $\exists A^{-1}, \forall n \in \mathbb{Z}^{+}, \lambda^{-n}$ is e-val of A^{-n} wr e-vec x

PfI $B C(n=1) \quad A^{\prime} x=A x=\lambda x$
IC $(n \geqslant 1)$

$$
\begin{aligned}
& \text { IH } A^{n} x=\lambda^{k} x \\
& \text { IS } A^{n+1} x=A\left(A^{n} x\right)=A\left(\lambda^{n} x\right)=\lambda^{n}(A x)=\lambda^{n} \lambda x=\lambda^{n+1} x
\end{aligned}
$$

Pf2 $\quad A x=\lambda x$

$$
A^{-1} A x=A^{-1} \lambda x
$$

$I_{x}=\lambda\left(A^{-1} x\right)$ not zero since $\exists A^{-1}$
$A^{-1} x=\frac{1}{\lambda} x$ as reged

