Lee 19

Recall the eigenvec equation

$$
A \vec{x}=\lambda \vec{x}-\neq \overrightarrow{0}
$$

ever e-val
\# More eigen theorems
Thu: Let $A_{n \times n}$ have e-vals $\lambda_{1}, \ldots, \lambda_{k} w \sim$ corresponding e-vecs v_{1}, \ldots, v_{k}. if x is linear combo

$$
x=c_{1} v_{1}+\cdots+c_{k} v_{k}
$$

then

$$
A^{m} x=c_{1} \lambda_{1}^{m} v_{1}+\cdots+c_{k} \lambda_{k}^{m} v_{k}
$$

Pf

$$
\begin{aligned}
A^{m}\left(c_{1} v_{1}+\cdots+c_{k} v_{k}\right) & =c_{1} A^{m} v_{1}+\cdots \\
& =c_{1} \lambda_{1}^{m} v_{1}+\cdots
\end{aligned}
$$

\# Computation applications - huge power of matrix
Consider: $A=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]$ wan $\lambda_{1}=2, v_{1}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] ; \lambda_{2}=4, v_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

* What if we want to find A^{30} ?

Notice: $A^{30}=\left[A^{30}\left[\begin{array}{l}1 \\ 0\end{array}\right] \quad A^{30}\left[\begin{array}{l}0 \\ 1\end{array}\right]\right],\left[\begin{array}{l}1 \\ 0\end{array}\right]=\frac{1}{2}\left(v_{2}-v_{1}\right),\left[\begin{array}{l}0 \\ 1\end{array}\right]=\frac{1}{2}\left(v_{1}+v_{2}\right)$

$$
\begin{aligned}
\text { so } A^{30}\left[\begin{array}{l}
1 \\
0
\end{array}\right] & =\frac{1}{2} A^{30}\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\frac{1}{2} A^{30}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
& =\frac{1}{2} 4^{30}\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\frac{1}{2} 2^{30}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{l}
2^{59}+2^{29} \\
2^{59}-2^{29}
\end{array}\right] \\
\text { and } A^{30}\left[\begin{array}{l}
0 \\
1
\end{array}\right] & =\frac{1}{2} A^{30}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\frac{1}{2} A^{30}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\end{aligned}
$$

\# Eigen* and L.T.
Consider $T_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ via $x \mapsto\left[\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right] \times, T_{2}$ via $x \mapsto\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right] \times$

Consider.
$A=\left[\begin{array}{ccc}7 & 1 & -2 \\ -3 & 3 & 6 \\ 2 & 2 & 2\end{array}\right] \quad$ TS $\lambda=6$ is a e-val \rightarrow show $\operatorname{det}(A-6 I)=0$

$$
\rightarrow x=x_{2}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

Notice: $\lambda=6$ is double root, and corresponding eigenvecs has 2 free vars * algebraic multiplicity is the mun of tunes λ appear as root.

