Lec 20

Span & eigen

- Def Let v1,..., vk in a vector space V. Take some linear combo the <u>span</u> of these vectors is $\{c, v, + ... + c_{k}v_{k} \mid c_{1}, ..., c_{k} \in \mathbb{R}\}$
- Lemma if v, ..., vk are e-vecs of A with same e-val λ , then any non-zero linear combo of v, ..., vk is also a e-vec of A with e-val λ .
 - $\frac{Proof}{Suppose} \quad c_1v_1 + \dots + c_kv_k \neq 0$ then $A(c_1v_1 + \dots + c_kv_k) = c_1Av_1 + \dots + c_kAv_k$ $= \lambda(c_1v_1 + \dots + c_kv_k)$ so $c_1v_1 + \dots + c_kv_k$ is e-vec by def
- Def Let Anxn with e-val λ , then the set of corresponding e-vec together with \vec{o} is the λ -eigenspace, denoted E_{λ} . Ex (using A from last lec) $E_6 = \text{span}\left(\begin{bmatrix} -1\\ 0\\ 1 \end{bmatrix}, \begin{bmatrix} 2\\ 0\\ 1 \end{bmatrix}\right)$

Thin Ex is a vector space

- # Subspace

Item If V is vec space and W⊆V, W≠Ø, then W is enbspace of V iff: ^{1.} Closed under addition ^{2.} Closed under scaler mul Ef WTS W sortiefies the 10 axioms ^{1.} assumed 2. addition commutative in V ⇒ in W-too 3. ... associative 4. ∃w∈W, D=Ow, but W closed under scaler mul, co D=Ow∈W 5. -w=(-1)w ∈ W since W closed under scaler mul 6. assumed 7 1 all true in V so also true in W.

* Trivial subspaces: - 20,3 is always subspace of V - V is always subspace of V

Then Let V be vector space with vecs VI, ..., VE EV, then - span (VI, ..., VE) is subspace of V - Any subspace that contain VI, ..., VE contains span (VI, ..., VE) Viz. span (VI, ..., VE) is the smallest subspace that contains VI, ..., VE

Pf
Let
$$W = \operatorname{span}(V_1, \dots, V_k)$$

Then $v_i \in W \Rightarrow W \neq \phi$ as req
Also, suppose $c_iv_i + \dots + c_kv_k \in W$, $d_iv_i + \dots + d_kv_k \in W$,
then $c_iv_i + \dots + c_kv_k + d_iv_i + \dots + d_kv_k$
 $= (c_i+d_i)v_i + \dots + (c_k+d_k)v_k \in W$ as req
Finally, $r(c_iv_i + \dots + c_kv_k)$
 $= (rc_i)v_i + \dots + (rc_k)v_k \in W$ as req
* Some interesting subspaces for Aman
 $\int |V_i| = T_i T_i = T$

Recall $A = \begin{bmatrix} c_1 & \cdots & c_n \end{bmatrix} = \begin{bmatrix} -r_n & - \\ -r_n & - \end{bmatrix}$ - col(A) = span(c_1, ..., c_n), which is a subspace of \mathbb{R}^n - row(A) = span(c_1, ..., c_m) = \mathbb{R}^n