Lee 20
\# Span * eigen

Def Let v_{1}, \ldots, v_{k} in a vector space V. Take some linear combo the span of these vectors is $\left\{c_{1} v_{1}+\cdots+c_{k} v_{k} \mid c_{1}, \ldots, c_{k} \in \mathbb{R}\right\}$

Lemma if v_{1}, \ldots, v_{k} are e-vecs of A with same e-val λ, then any non-zero linear combo of v_{1}, \ldots, v_{k} is also a e-vec of A with erval λ.

Proof
Suppose $c_{1} v_{1}+\cdots+c_{k} v_{k} \neq 0$
then $A\left(c_{1} v_{1}+\cdots+c_{k} v_{k}\right)=c_{1} A v_{1}+\cdots+c_{k} A v_{k}$

$$
=\lambda\left(c_{1} v_{1}+\cdots+c_{k} v_{k}\right)
$$

so $c_{1} v_{1}+\cdots+c_{k} v_{k}$ is e-vec by def
Def Let $A_{n \times n}$ with e-val λ, then the set of corresponding e-vec together with $\overrightarrow{0}$ is the λ-eigenspace, denoted E_{λ}.
E_{x} (using A from last lee) $E_{0}=\operatorname{span}\left(\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]\right)$
Thu E_{λ} is a vector space
\# Subspace
Def A nonempty subset W of a vector space V is a subspace of V if w is a vector space with the same Θ and θ as V.
$E_{x} . \quad W=\left\{\left.\left[\begin{array}{l}x \\ y \\ 0\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, x, y \in \mathbb{R}\right\}$ is a subspace of \mathbb{R}^{3}
Thu If V is vec space and $W \subseteq V, W \neq \varnothing$, then W is subspace of V of:

1. Closed under addition
2. Closed under scaler mull

Pf $W T S W$ satisfies the 10 axioms

1. assumed
2. addition commutative in $V \Rightarrow$ in W too
3. ... associative
4. $\exists w \in W, \vec{D}=0 W$, but \bar{W} dosed nuder scaler mut, so $\overrightarrow{0}=0 w \in W$
5. $-w=(-1) w \in W$ since W closed under scaler mul
6. assumed
$\left.\begin{array}{c}7 \\ \vdots \\ 10\end{array}\right]$ - all
all true in V so abs true in W.

* Trivial subspaces:
- $\left\{\vec{O}_{v}\right\}$ is always subspace of V
- V is always subspace of V

Thu Let V be vector space with vecs $v_{1}, \ldots, v_{k} \in V$, then

- $\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)$ is subspace of V
- Any subspace that contain v_{1}, \ldots, v_{k} contains $\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)$
$v_{i 2}$. $\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)$ is the smallest subspace that contains v_{1}, \ldots, v_{k}

Pf
Let $w=\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)$
Then $v_{1} \in W \Rightarrow W \neq \phi$ as req
Also, suppose $c_{i} v_{1}+\cdots+c_{k} v_{k} \in W, \quad d_{i} v_{1}+\cdots+d_{k} v_{k} \in W$, then $c_{1} v_{1}+\cdots+c_{k} U_{k}+d_{1} v_{1}+\cdots+d_{k} v_{k}$

$$
=\left(c_{1}+d_{1}\right) v_{1}+\cdots+\left(c_{k}+d_{k}\right) v_{k} \in W \text { as neg }
$$

Finally, $r\left(c_{1} v_{1}+\cdots+c_{k} v_{k}\right)$

$$
=\left(r c_{1}\right) v_{1}+\cdots+\left(r c_{k}\right) v_{k} \in W \text { as } r \text { eq }
$$

* Some interesting subspaces for $A_{m \times n}$

$$
\text { Recall } A=\left[\begin{array}{ccc}
1 & & 1 \\
c_{1} & \cdots & c_{n} \\
1 & & 1
\end{array}\right]=\left[\begin{array}{c}
-r_{1}^{\top}- \\
\vdots \\
-r_{m}^{\top}-
\end{array}\right]
$$

$-\operatorname{col}(A)=\operatorname{span}\left(c_{1}, \ldots, c_{n}\right)$, which is a subspace of \mathbb{R}^{n}
$-\operatorname{row}(A)=\operatorname{span}\left(r_{1}, \ldots, r_{m}\right)$ \mathbb{R}^{m}

