Lee 21
\# Some more deft
Def If $w=\operatorname{span}\left(v_{1}, \cdots, v_{k}\right)$, we say
$-v_{1}, \cdots, v_{k}$ span W
$-\left\{v_{1}, \ldots, v k\right\}$ is a spanning set of w
Def The mull space of $A_{m \times n}$ is $\operatorname{mul}(A)=\left\{x \in \mathbb{R}^{n} \mid A x=\overrightarrow{0}\right\}$
Claim null(A) is a subspace of \mathbb{R}^{n}
Proof First $\operatorname{nul}(A) \neq \varnothing$ since $A \vec{o}_{\mathbb{R}^{n}}=\vec{O}_{\mathbb{R}^{n}} \Rightarrow \vec{O} \vec{R}^{n} \in \operatorname{nul}(A)$
Now let $\vec{x}, \vec{y} \in \operatorname{nul}(A)$. WIS $\vec{x}+\vec{y} \in \operatorname{nul}(A)$.
Well $A(\vec{x}+\vec{y})=A \vec{x}+A \vec{y}=\overrightarrow{0}+\overrightarrow{0}=0 \Rightarrow \vec{x}+\vec{y} \in \mathrm{mul}(A)$
Finally let $c \in \mathbb{R}$. WTS $e \vec{x} \in \operatorname{mul}(A)$
Well $A(c \vec{x})=c(A \vec{x})=c \overrightarrow{0}=\overrightarrow{0} \Rightarrow c \vec{x} \in \operatorname{mul}(A)$
\# Linear Independence
Def $\left\{v_{1}, \ldots, v_{k}\right\}$ in vector space V is linearly dependent if

$$
\exists a_{1}, \ldots, c_{k} \in \mathbb{R},(\underbrace{\sim \forall c \in\left\{c_{1}, \ldots, c_{k}\right\}}_{\text {none of } \vec{c} \text { is } \overrightarrow{0}}, c=\overrightarrow{0}, \underbrace{c_{1} v_{1}+\cdots+c_{k} v_{k}=\overrightarrow{0}}_{\text {but can combine to }}))
$$

Def $c_{1} v_{1}+\cdots+c_{k} v_{k}=\overrightarrow{0}$ is a linear dependence relation

- If $c_{1}=\cdots=c_{k}=0$, it's a trivial lin. dep. rel.
- Else it's nontrivial

Ex Find all lin. dep. vel. for $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 4\end{array}\right]\right\}$
Wont: $c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}-1 \\ 4\end{array}\right]=0$
Solve $\leadsto\left(c_{1}, c_{2}\right)=0$
It's only the trivial one, so $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 4\end{array}\right]\right\}$ are lin. indep.

Ex Find all lin. dep. vel. for $\left\{\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]\right\}$
Solve $\left[\begin{array}{ccc:c}1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 2 & 1 & 1 & 0\end{array}\right] \leadsto\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]=\left[\begin{array}{c}-c_{3} \\ c_{3} \\ c_{3}\end{array}\right]=c_{3}\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$
So we have non-trivial sols if $c_{3} \neq 0$, so set is lin. dep.
Thu Let $v_{1}, \ldots, v_{n} \in \mathbb{R}^{m}$ and let

$$
A=\left[\begin{array}{cc}
1 & 1 \\
v_{1} & \ldots \\
1 & v_{n} \\
1 & 1
\end{array}\right] .
$$

Then $\left\{v_{1}, \ldots, v_{n}\right\}$ is lin. index. If $A \vec{x}=\overrightarrow{0}$ has only the triural sol Proof just by deft.
Notice if $n=m, A \vec{x}=\overrightarrow{0}$ has only the trivial sol $\Leftrightarrow \exists A^{-1}$.
Thu $\left\{v_{1}, \ldots, v_{k}\right\}$ is lin. dep. if some $v_{i} \in\left\{v_{1}, \ldots, v_{k}\right\}$ can be writer as a linear combo of $\left\{v_{1}, \ldots, v_{k}\right\} \backslash\left\{v_{i}\right\}$

Thu If $m>n$, then $\left\{v_{1}, \ldots, v_{m}\right\} \subseteq R^{n}$ is lin. dep.
L think of as no more dimension to point in after using all n.
Proof
Well we want sol. $\left.\quad\left[\begin{array}{ccc:c}1 & & 1 & 1 \\ v_{1} & \cdots & v_{m} & 0 \\ 1 & & 1 & 1\end{array}\right]\right\}^{n}$
But at most we have: $\left[\begin{array}{lllll:l}1 & 0 & 1 & 1 & \\ 1 & 0 & * & * & 0 \\ 0 & 1 & 1 & 1 & \end{array}\right]$
We always have free vars since we can have \max of n leading out of m vars

Def A set $B=\left\{b_{1}, \ldots, b_{n}\right\}$ in vec. space V is a basis if

1. B spans V
2. B is lin indep.
