Lec 21

Some more defs

Def If
$$W = space(v_1, ..., v_E)$$
, we say
 $v_1, ..., v_E \xrightarrow{\text{spann}} W$
 $- \{v_1, ..., v_E\}$ is a spanning set of W
Def The null space of Amxn is $nul(A) = \{x \in \mathbb{R}^n | Ax = \vec{o}\}$
Claim nul(A) is a subspace of \mathbb{R}^n
Proof First $nul(A) \neq \emptyset$ since $A\vec{o}_{\mathbb{R}^n} = \vec{o}_{\mathbb{R}^n} \Rightarrow \vec{o}_{\mathbb{R}^n} \in nul(A)$
Now let $\vec{x}, \vec{y} \in nul(A)$. $WT \leq \vec{x} + \vec{y} \in nul(A)$.
Now $(et \vec{x}, \vec{y} \in nul(A)$. $WT \leq \vec{x} + \vec{y} \in nul(A)$.
Now $(et c \in \mathbb{R}, WT \leq c\vec{x} \in nul(A))$.
Finally $(et c \in \mathbb{R}, WT \leq c\vec{x} \in nul(A))$
Well $A(c\vec{x}) = c(A\vec{x}) = c\vec{o} = \vec{o} \Rightarrow c\vec{x} \in nul(A)$

Find all lin. dep. rel. for { 0, 1, -1 } Ex Solve $\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 2 & 1 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} -c_3 \\ c_3 \end{bmatrix} = c_3 \begin{bmatrix} -1 \\ 1 \\ c_3 \end{bmatrix}$ So we have non-trivial sols of c3 = 0, so set is lin. dep. Let VI, ..., Vn E R" and let Thm $A = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}.$ Then Evi, ..., vn 3 is lin. indep. of Az = 0 has only the trivial sol Proceef just by defs. Notice if n=m, Ax = 0 has only the trivial sol \Leftrightarrow 3A'. $\underbrace{\underbrace{\varepsilon}_{v_1,\ldots,v_k}}_{as a lineor combo}$ of $\underbrace{\underbrace{\varepsilon}_{v_1,\ldots,v_k}}_{as a lineor combo}$ of $\underbrace{\underbrace{\varepsilon}_{v_1,\ldots,v_k}}_{as a lineor combo}$ Thm If <u>m>n</u>, then $zv_1, ..., vm3 ⊆ Rⁿ is lin. dep.$ Les think of as no more dimension to point in after usingThin Proof Well we want sol. But at most we have: we always have free vars since we can have max of n leading out of m vars A set B= {b, ..., b, } in vec. space V is a basis if Det 1. B spans V 2. B is lin. indep.