Lee 22
\# Theorems about basis
Def Recall basis of v.s. $V:=$ set of line. indep. vecs that spams V
Thy If $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is basis of v.s. V, then $v \in V$ can be written as a unique linear combo $v=c_{1} b_{1}+\cdots+c_{n} b_{n}$

Proof Let $v \in V$, since B spans $V, v=c, b_{1}+\cdots+c_{n} b_{n}$
Suppose $v=d_{1} b_{1}+\cdots+d_{n} b_{n}$
Then $\overrightarrow{0}=v-v=\left(d_{1}-c_{1}\right) b_{1}+\cdots+\left(d_{n}-c_{n}\right) b_{n}$
$\Rightarrow \quad d_{1}-c_{1}=0, \cdots, d_{n}-c_{n}=0 \quad$ since B tm. indep.
$\Rightarrow \quad d_{1}=c_{1}, \cdots, d_{n}=c_{n}$
Thu If $B=\left\{b_{1}, \ldots, b_{n}\right\}$ spans v.s. V, then $A=\left\{v_{1}, \ldots, v_{m}\right\} \subseteq V$ with $|A|>|B|$ in lin dep.

Pref WTS there is a non trivial $c_{1} v_{1}+\cdots+c_{m} V_{m}=\vec{o}_{v}$
Since B spans V,

$$
\begin{aligned}
& v_{1}=a_{11} b_{1}+\cdots+a_{1 n} b_{n} \\
& \vdots \\
& v_{m}=a_{m 1} b_{1}+\cdots+a_{m n} b_{n}
\end{aligned}
$$

Then $c_{1} v_{1}+\cdots+c_{m} v_{m}$

$$
\begin{aligned}
& =c_{1}\left(a_{11} b_{1}+\cdots+a_{1 n} b_{n}\right)+\cdots+c_{m}\left(a_{m 1} b_{1}+\cdots+a_{m n} b_{n}\right) \\
& =\left(c_{1} a_{11}+\cdots+c_{m} a_{m_{1}}\right) b_{1}+\cdots+\left(c_{1} a_{1 m}+\cdots+c_{m} a_{m n}\right) b_{n}=\overrightarrow{0}
\end{aligned}
$$

But then

$$
c_{1} a_{11}+\cdots+c_{m} a_{m 1}=0, \cdots, \quad c_{1} a_{1 m}+\cdots+c_{m} a_{m n}=0
$$

If we solve for c_{j}, there are m unknowns and n equations, so there will be free variables.

So we can choose some c_{j} to be non zero to make $c_{1} v_{1}+\cdots+c_{m} V_{m}$ have non-trivil solution .

Thu If $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is lin indep and $m<n$, then $\left\{v_{1}, \ldots, v_{m}\right\} \leq W=\operatorname{span}(B)$ cannot $\operatorname{span} W$.

Proof suppose $\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)=\operatorname{span}\left(b_{1}, \ldots, b_{n}\right)$ but then $\left\{b_{1}, \ldots, b_{n}\right\}$ is lin dep. since $n>m$, that contradicts B being lin indep.
Thy If $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is a basis for $v . s . V$, then any other basis for v has to have n vectors

Prese f
more than $n \Rightarrow$ not lin. indep.
less than $n \Rightarrow$ can't span
Def The number of vecs in a basis is the dimension of the v.s.
\# Spaces
Thy Doing elem. row ops does nut change row space of matrix

