Lee 23

Midterm next class

* Continue from last lee

Thy Doing elem. row ops does nut change row space of matrix More formally: If A^{\prime} is obtained from A by elem now ops, row $A=$ row A '
Proof
We case elem row ops on
(i) Interchange rows [exercise]
(i) Maul row [exercise]
(iii) Add mull of row j to row i

$$
A=\left[\begin{array}{c}
r_{i} \\
\vdots \\
r_{i}{ }^{\top} \\
r_{j}{ }^{\top} \\
\vdots
\end{array}\right] \leadsto A^{\prime}=\left[\begin{array}{c}
r_{i}{ }^{\top}+t_{r_{j}} \\
r_{j} \\
\vdots \\
\vdots \\
\vdots
\end{array}\right]
$$

Let $v \in \operatorname{row}(A)$, $w T S v \in \operatorname{row}\left(A^{\prime}\right)$

$$
\begin{aligned}
v & =\cdots+c_{i} r_{i}+\cdots+c_{j} r_{j}+\cdots \\
& =\cdots+c_{i} r_{i}+\cdots+c_{j} r_{j}+\cdots+c_{i} t r_{j}-c_{i} t r_{j} \\
& =\cdots+c_{i}\left(r_{i}+r_{j}\right)+\cdots+\left(c_{j}-c_{i}\right) \underline{r_{j}}+\cdots \\
& \epsilon \operatorname{row}\left(A^{\prime}\right)
\end{aligned}
$$

Let $v \in \operatorname{row}\left(A^{\prime}\right)$ UTS $v \in \operatorname{row}(A$)
[simile]
Cole $\operatorname{row}(A)=\operatorname{row}(\operatorname{rref}(A))$
Fact The won-zero rows in $\operatorname{rref}(A)$ form a lin indep. set.

$$
\text { Ex. } A=\left[\begin{array}{ccccc}
1 & 2 & -4 & -4 & 5 \\
2 & 4 & 0 & 0 & 2 \\
2 & 3 & 2 & 1 & 5 \\
-1 & 1 & 3 & 6 & 5
\end{array}\right], \quad \operatorname{ref}(A)=\left[\begin{array}{ccccc}
1 & 0 & 0 & -2 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

these lin index Ω
\rightarrow So we can find a basis by taking ref
$\rightarrow \operatorname{dim}(\operatorname{row}(A))=$ mum of leading is in $\operatorname{rref}(A)$

Thy Dong elem row ops on A changes row (A)
Counterexample: $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], A^{\prime}=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$
But the linear dependence rel among the cols doesn't change.

$$
\begin{gathered}
R=\operatorname{mef}(A) \Leftrightarrow \operatorname{rnef}\left[\begin{array}{l:l}
A & \overrightarrow{0}
\end{array}\right]=\left[\begin{array}{l:l}
R & \overrightarrow{0}
\end{array}\right] \\
A \vec{x}=\overrightarrow{0} \Leftrightarrow R \vec{x}=\overrightarrow{0}
\end{gathered}
$$

$\operatorname{Supp} A=\left[\begin{array}{ccc}1 & & 1 \\ v_{1} & \cdots & v_{n} \\ 1 & & 1\end{array}\right], \quad R=\left[\begin{array}{ccc}1 & 1 \\ w_{1} & \cdots & 1 \\ 1 & w_{n} \\ 1 & 1\end{array}\right]$
Consider

$$
\begin{aligned}
& c_{1} v_{1}+\cdots+c_{n} v_{n}=\overrightarrow{0} \\
& \text { Then } A\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]=\overrightarrow{0} \Leftrightarrow R\left[\begin{array}{c}
c_{1} \\
c_{n}
\end{array}\right]=\overrightarrow{0} \quad \Rightarrow c_{1} w_{1}+\cdots+c_{n} w_{n}=\overrightarrow{0}
\end{aligned}
$$

$\frac{\text { Fact }}{\Downarrow}$ The cols with leading 1 are a basis for $\operatorname{col}(R)$
Thy Those corresponding col in A are basis for $\operatorname{cd}(A)$

$$
\text { Ex. } A=\left[\begin{array}{ccccc}
1 & 2 & -4 & -4 & 5 \\
2 & 4 & 0 & 0 & 2 \\
2 & 3 & 2 & 1 & 5 \\
-1 & 1 & 3 & 6 & 5
\end{array}\right], \quad \operatorname{ref}(A)=\left[\begin{array}{ccccc}
1 & 0 & 0 & -2 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

basis for $\operatorname{col}(A)$
$\rightarrow \operatorname{dim}(\operatorname{col}(A))=$ mum of leading $I_{s}=\operatorname{dim}($ row $(A))$
\# Basis for mull space
Recall: $\operatorname{nul}(M)=\{x: M x=\overrightarrow{0}\}$
Thu Let $R=\operatorname{rref}(A)$, then $\operatorname{mul}(A)=\operatorname{nul}(R)$

$$
\text { Ex. } A=\left[\begin{array}{ccccc}
1 & 2 & -4 & -4 & 5 \\
2 & 4 & 0 & 0 & 2 \\
2 & 3 & 2 & 1 & 5 \\
-1 & 1 & 3 & 6 & 5
\end{array}\right], \quad \operatorname{ref}(A)=\left[\begin{array}{ccccc}
1 & 0 & 0 & -2 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Solve $R \vec{x}=0$ yields $\left[\begin{array}{c}2 \\ -1 \\ -1 \\ 0\end{array}\right] C_{4}$, and $\left\{\left[\begin{array}{c}2 \\ -1 \\ -1 \\ 0\end{array}\right]\right\}$ is spenfor $\operatorname{mul}(R)$

Ex. $R=\left[\begin{array}{llllll}1 & 2 & 0 & 0 & 3 & 1 \\ 0 & 0 & 1 & 0 & -2 & 2 \\ 0 & 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$, solves to $c_{2}\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]+c_{5}\left[\begin{array}{c}-2 \\ 0 \\ 2 \\ 2 \\ 1 \\ 0\end{array}\right]+c_{6}\left[\begin{array}{c}-1 \\ 0 \\ -2 \\ 0 \\ 0 \\ 1\end{array}\right]$
$\rightarrow \operatorname{dim}(\operatorname{mil}(A))=$ mum of free vars in R

