Lee 24
\# More row, col, null spaces
Consider: $\quad A=\left[\begin{array}{ccccc}1 & 2 & -5 & 4 & 54 \\ 0 & 0 & -3 & -75 & -744 \\ 6 & 12 & -24 & 59 & 662 \\ -2 & -4 & 8 & -18 & -204\end{array}\right], R=\operatorname{rref}(A)=\left[\begin{array}{lllll}1 & 2 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 10 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
\hookrightarrow so a basis for row (A) is $\{\square$,$\} whatever.$

* Same of pivot \Rightarrow same dim \downarrow called the rank of matrix
$\rightarrow \quad$ a basis for $\cot (A)$ is $\{,$,$\} Always subset of col vectors$
Null space $\operatorname{mul}(A)=\{$ sols to $A \vec{x}=\overrightarrow{0}\}$
\rightarrow Find vector form for $A \vec{x}=\overrightarrow{0}$, well get lin . indep. vecs.

$$
\begin{aligned}
& x_{1}+2 x_{2}+4 x_{3}=0 \\
& x_{3}-2 x_{5}=0 \\
& x_{4}+10 x_{5}=0
\end{aligned} \quad \Rightarrow \vec{x}=x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-4 \\
0 \\
2 \\
-10 \\
1
\end{array}\right]
$$

\rightarrow a basis for mil A is $\{,$,
Def Rank of matrix $=\operatorname{dim}(\operatorname{col}(A))=\operatorname{dim}(\operatorname{row}(A))$
$=$ mum of pivots
$=$ mum of leading vars

$$
\begin{aligned}
\text { Def Nullity of matrix } & =\operatorname{dim}(\text { mull }(A)) \\
& =\text { mum of free vars } \\
& =\text { mum of non-pivot cols. }
\end{aligned}
$$

Thu The Rank Theorem: if A has n cols:

$$
\operatorname{rank} A+\text { nullity } A=n
$$

Thu $\operatorname{rank}(A)=\operatorname{rank}\left(A^{\top}\right)$

$$
\text { Proof } \begin{aligned}
\operatorname{rank}\left(A^{\top}\right)=\operatorname{dim}\left(\operatorname{row}\left(A^{\top}\right)\right. & =\operatorname{dim}(\operatorname{col}(A)) \\
& =\operatorname{rank}(A)
\end{aligned}
$$

Than Let $A_{n \times n}$, then the following \Leftrightarrow
Cb. $A \vec{x}=\vec{B}$ has unique sol
c. $A \vec{x}=\overrightarrow{0}$ has only $\vec{x}=\overrightarrow{0}$ as sol
(c). $\operatorname{rref}(A)=I_{n}$
$f \cdot \operatorname{rank}(A)=n$
Uh. Cols of A are lin indep
${ }^{i}$ i. Cols of A spans \mathbb{R}^{n}
\rrbracket_{j}. Cols of A forms a basis for \mathbb{R}^{n}
Proof using dir of impi. shown \rightarrow '
$(f \rightarrow d)$ If $\operatorname{rank} A=n$, there are n leading entries in ref $A \Rightarrow \operatorname{rref} A=$ In $\left.\begin{array}{l}(d \Rightarrow c) \\ (c \Rightarrow b)\end{array}\right]$ by $F T_{0} I M$
$(b \Rightarrow i) A \vec{x}=\vec{b}$ has inique sol for all $\vec{b} \in \mathbb{R}^{n}$, then $A \vec{x}$ being linear combo of cols of $A \Rightarrow \operatorname{col} A=R^{n}$

$$
\begin{aligned}
& (i \Rightarrow f) \operatorname{col} A=\mathbb{R}^{n} \quad \text { then } \operatorname{rank} A=\operatorname{dim}(\operatorname{col} A)=\operatorname{dim}\left(\mathbb{R}^{n}\right)=n \\
& (c \Leftrightarrow h) A \vec{x}=\overrightarrow{0} \Rightarrow \vec{x}=0 \\
& A=\left[\begin{array}{ccc}
1 & 1 \\
c_{1} & \cdots & c_{n} \\
1 & & 1
\end{array}\right] \quad, A \bar{x}=x \cdot c_{1}+\cdots+x_{n} c_{n}=\overrightarrow{0} \Rightarrow c_{i} \text { lin indep }
\end{aligned}
$$

Same in reverse
$(f \wedge h \Leftrightarrow j)$ By def

