Lec 25

Updated Fund Thus of Invertible Matrices (putting things together)

Then Let Amen, TFAE: a. $\exists A^{-1}$ b. Ax = b has unique od c. $Ax = \overline{o}$ has only -trivil od d. vref A = Inc. A is prod of elem matrices f. rank A = ng. multity A = 0h. cots of A are tim. indep. -k. i. cots of A are tim. indep. -k. j. cots of A span \mathbb{R}^n -l. j. cots of A span \mathbb{R}^n -k. j. cots of A form a basis for \mathbb{R}^n -m.

Eigenspaces

Recall $Av = \lambda v \iff (A - \lambda I)v = \vec{o} \iff A - \lambda I$ not invertible Eigenspace $E_{\lambda} = \{v \mid (A - \lambda I)v = \vec{o} \} \cup \{\vec{o}\}$

> Can we relate this eigenspace to one of the subspaces we know?

Thus
$$E_{\lambda} = uul (A - \lambda I)$$

Consider: $A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$ with $\lambda = 3$, $\lambda = 2$
Thus $\lambda = 3$, $\lambda =$

Basis for Ez : solve [omitted] yields x2 [0] yields x2 [0]

Notice dim E2 = 2 < matches double not dim E3 = 1 < hun

Def Algebraic multiplicity of e-val λ_i is the number of times $(\lambda - \lambda_i)$ show up as a factor of det $(A - I\lambda)$. det $(A - \lambda I) = (\lambda - 2)(\lambda - 3)(\lambda - 3)(\lambda - 2)$

Def Geometric multiplicity of λ_i is dim (E_{λ_i})

Notice: We can always find one line of evecs, so I ≤ geometric multiplicity and geometric multiplicity ≤ algebraic multiplicity

If geo. mult. = alge mult. for all the e-vals, we get basis for IR" and we can take large power of A, etc. Else maybe not

Orthogonality

Def Dot product Lomitted] Properties $1. x \cdot y = y \cdot x$ $2. x \cdot (y+z) = x \cdot y + x \cdot z$ $3. (x \cdot y) = c (x \cdot y)$ $4a. x \cdot x \ge 0$ $b. x \cdot x = 0 \Leftrightarrow x = \overline{0}$

Def Inner product: operation in any V.S. that satisfy these For V.S. V, an inner prod is an op that assigns to any pair of vecs $u, v \in V$ a real mum $(u, v) \in \mathbb{R}$ s.t. for all $u, v, w \in V$ and $c \in \mathbb{R}$, 1. $\langle u, v \rangle = \langle v, u \rangle$ 2. $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$ 3. $\langle cu, v \rangle = c \langle u, v \rangle$ 4a. $\langle u, u \rangle \Rightarrow 0$ b. $\langle u, u \rangle = 0 \iff v = 0$

Ex. Let P be V.S. of degree 2 polynomials. Define $\langle p, q \rangle = \int_{0}^{1} p(x) q(x) dx$ This satisfies (-4.