\# Updated Fund Thu of Invertible Matrices (putting things together)
Thus Let $A_{n \times n}$, TFAE:
a. $\exists A^{-1}$
b. $A x=b$ has unique sd
c. $A x=\overrightarrow{0}$ has only trivil sol
d. $\operatorname{vref} A=I_{n}$
c. A is prod of elem matrices
f. $\operatorname{rank} A=n$
g. nullity $A=0$
h. cols of $A$ are lin. indep.
$i$. cols of $A \operatorname{spam} \mathbb{R}^{n}$
$j$. cols of $A$ form a basis for $\left.\mathbb{R}^{n} \begin{array}{l}-l . \\ -m .\end{array}\right\}$ same for rows
n. $\operatorname{det} A \neq 0$
o. $O$ is not an e-val for $A$
\# Eigenspaces
Recall $\quad A_{v}=\lambda v \Leftrightarrow(A-\lambda I) v=\overrightarrow{0} \Leftrightarrow A-\lambda I$ not invertible
Eigenspace $E_{\lambda}=\{v \mid(A-\lambda I) v=\overrightarrow{0}\} \cup\{\overrightarrow{0}\}$
$\rightarrow$ Can we relate this eigenspace to one of the subspaces we know?
Thu $E_{\lambda}=\operatorname{nul}(A-\lambda I)$
Consider: $A=\left[\begin{array}{llll}2 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2\end{array}\right]$ with $\lambda=3, \lambda=2$ $\left.\begin{array}{r}\left.\begin{array}{c}\text { Basis for } E_{2}: \\ \downarrow\end{array} \begin{array}{c} \\ \left\{\begin{array}{l}\downarrow \\ \\ \text { yields }\end{array}\right.\end{array} \begin{array}{cccc:c}2-2 & 0 & 0 & 0 & 0 \\ 0 & 3-2 & 1 & 0 & 0 \\ 0 & 0 & 3-2 & 0 & 0 \\ 0 & 0 & 0 & 2-2 & 0\end{array}\right] \\ 0 \\ 0 \\ v_{4}\end{array}\right]=v_{1}\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]+v_{4}\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$

Basis for $E_{3}$ : solve [omitted]


Notice $\operatorname{dim} E_{2}=2 \leftarrow$ matches double root $\operatorname{dim} E_{3}=1 \leftarrow \min$

Def Algebraic multiplicity of $e$-val $\lambda_{i}$ is the number of times $\left(\lambda-\lambda_{i}\right)$ show up as a factor of $\operatorname{det}\left(A-I_{\lambda}\right)$.

$$
\left.\begin{aligned}
\operatorname{det}(\lambda-\lambda I)=(\lambda-2) & \underbrace{(\lambda-3)(\lambda-3)(\lambda-2)}_{\text {so does } 2} \\
& \text { has multicity } 2
\end{aligned} \right\rvert\,
$$

Def Geometric multiplicity of $\lambda_{i}$ is $\operatorname{dim}\left(E_{\lambda_{i}}\right)$
Notice: We can always fund one line of e-vecs, so $1 \leqslant$ geometric multiplicity and geometric multiplicity $\leq$ algebraic multiplicity

If geo. mult. = abe mult. for all the e-vals, we get basis for $\mathbb{R}^{n}$ and we can take large power of $A$, etc.
Else maybe not
\# Orthogonality
Def Dot product [omitted]
Properties

1. $x \cdot y=y \cdot x$
2. $x \cdot(y+z)=x \cdot y+x \cdot z$
3. $c x \cdot y=c(x \cdot y)$

4a. $x \cdot x \geqslant 0$
b. $x \cdot x=0 \Leftrightarrow x=0$

Def Inner product: operation in any V.S. that satisfy these For V.S. V, an inner prod is an op that assigns to any pair of vecs $u, v \in V$ a real mum $\langle n, v\rangle \in \mathbb{R}$ s.t. for all $u, v, w \in V$ and $c \in \mathbb{R}$,

$$
\begin{aligned}
& \text { 1. }\langle u, v\rangle=\langle v, u\rangle \\
& \text { 2. }\langle u, v+w\rangle=\langle u, v\rangle+\langle u, w\rangle \\
& \text { 3. }\langle\langle u, v\rangle=c\langle u, v\rangle \\
& \text { fa. }\langle u, u\rangle \geqslant 0 \\
& \text { b. }\langle u, u\rangle=0 \Leftrightarrow v=0
\end{aligned}
$$

Ex. Let $P$ be V.S. of degree 2 polynomials. Define $\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x$ This satisfies $1-4$.

