Lee 26
\# Norm
Def In \mathbb{R}^{n}, the length aka norm of a vec \vec{x} is

$$
\|\vec{x}\|=\sqrt{x \cdot x}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

This generalises to V.S. with inner prod $\langle\cdot, \cdot\rangle$
The norm of $v \in$ V.S. v is

$$
\|\vec{v}\|=\sqrt{\langle v, v\rangle}
$$

Def Inner product space is a V.S. with an inner prod $(V,\langle\cdot, \cdot\rangle v)$
adding additional structure to a vector space
Notice $-\|c \vec{u}\|=|c|\|\vec{u}\|$
$-\|\vec{u}\|=0 \Leftrightarrow \sqrt{\langle u, u\rangle}=0 \Leftrightarrow\langle u, u\rangle=0 \Leftrightarrow u=\vec{o}_{v}$
$-\|u+v\| \leqslant\|u\|+\|v\| \leqslant$ trinangle equality

$$
\begin{aligned}
& \|u+v\|^{2} \leqslant(\|u\|+\|v\|)^{2} \\
& \|u+v\|^{2} \leqslant\|u\|^{2}+2\|u\|\|v\|+\|v\|^{2} \\
& \langle u+v, u+v\rangle \leqslant\langle u, u\rangle+2\|u\|\| \|+\langle v, v\rangle \\
& \langle u, u\rangle+\langle v, u\rangle+\langle u, v\rangle+\langle v, v\rangle \leqslant \cdots \\
& 2\langle u, v\rangle \leqslant 2\|u\|\| \| \\
& \quad\langle u, v\rangle \leqslant\|u\|\|v\| \\
& \qquad \text { Cauchy } \\
& \quad \text { Inequality }
\end{aligned}
$$

$$
-\|u-v\|^{2}=\|u\|^{2}+\|v\|^{2}-2\|u\|\| \| v \cos \theta
$$

For general I.P.S, we defame $\cos \theta=\frac{\langle u, v\rangle}{\|u\|\|v\|}$

Def in a I.P.S., we say that vecs u, v are orthogonal if $\langle u, v\rangle=0$.
Note $\overrightarrow{0}$ is orthogonal to every vector $\leftarrow\left\langle\overrightarrow{0}_{v}, u\right\rangle=0$

$$
\begin{aligned}
\left\langle 2 \vec{o}_{v}, u\right\rangle & =2\left\langle\vec{o}_{v}, u\right\rangle=\left\langle\vec{o}_{v}, u\right\rangle \\
& \Rightarrow\left\langle\vec{o}_{v}, u\right\rangle=0
\end{aligned}
$$

Def A set of vecs $\left\{v_{1}, \ldots, v_{k} \xi\right.$ is mutually orthogonal if $\left\langle v_{i}, v_{j}\right\rangle=0$ for all $v_{i}, v_{j} \in$ the set and $i \neq j$

Thu If $\vec{O} \notin\left\{v_{1}, \ldots, v_{k}\right\}$ and the set is mutually orthogonal implies it's lin indep.
Proof Suppose $c_{1} v_{1}+\cdots+c_{k} v_{k}=\overrightarrow{0}$

$$
\begin{aligned}
& \left\langle v_{i}, c_{1} v_{1}+\cdots+c_{k} v_{k}\right\rangle \\
= & c_{1}\left\langle v_{i}, v_{1}\right\rangle+\cdots+c_{k}\left\langle v_{i}, v_{k}\right\rangle \\
= & c_{i}\left\langle v_{i}, v_{i}\right\rangle \\
= & c_{i}\left\|v_{i}\right\|^{2}=0 \\
\Rightarrow & c_{i}=0 \text { since } v_{i} \neq \overrightarrow{0}
\end{aligned}
$$

Def A set of vecs $\left\{v_{1}, \ldots, v_{k} \xi\right.$ is orthonormal if they are mutually orthogonal and $\left\|v_{i}\right\|=1$ for all $v_{i} \in$ the set.

Ex. standard basis vec
Def Let v be I.P.S. and U, W be subspaces. V and W orthogonal if $\forall u \in U, \forall w \in W,\langle u, w\rangle=0$

Ex.

Notation We can write $u \perp w$

