Lee 28
\# Orthonormal basis
Notice Let $V$ be I.P.S. with some orthonormal basis $B=\left\{u_{1}, \ldots, u_{n}\right\}$
Let $v, w \in V$, then
$\left.\begin{array}{l}v=a_{1} u_{1}+\cdots+a_{n} u_{n} \\ w=b_{1} w_{1}+\cdots+b_{n} w_{n}\end{array}\right\}$ mique linear combo
Then

$$
\begin{aligned}
&\langle v, w\rangle= a_{1} b_{1}+\cdots+a_{n} b_{n} \\
&\langle v, v\rangle= \underset{1}{a_{1}^{2}+\cdots+a_{n}^{2}}=\|v\|^{2} \\
& \text { We get dot product } \\
& \text { like behowiours }
\end{aligned}
$$

We call $\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right]$ the coordinate vec for $v$ w.r.t. $B$
\# Orthogonal Projections
Let $u \in \mathbb{R}^{n}, u \neq \overrightarrow{0}, l=\operatorname{span}(n), v \in \mathbb{R}^{n}$

$\Rightarrow p$ is the linear combo in span (u) such that $(v-p) \perp u$
Then $p=t u$ and $(v-t u) \cdot u=0$
$\Rightarrow u \cdot v-u \cdot(t u)=0$
$u \cdot v-t(u \cdot u)=0$

$$
t=\frac{u \cdot v}{u \cdot u}
$$

$\operatorname{Prg}_{\vec{u}} \vec{v}=\left(\frac{u \cdot v}{u \cdot u}\right) u$
$\rightarrow$ Want to be able to project onto any subspace
Let $A_{n \times p}$, project $v \in \mathbb{R}^{p}$ onto $\operatorname{col} A$.


We must have (1) $p \in \operatorname{col} A$, (2) $v-p \in(\operatorname{col} A)^{\perp}$
Notice $\cot A=\left\{A x \mid x \in \mathbb{R}^{p}\right\}$. Then
(1) $p=A \hat{x}$ f.s. $\hat{x} \in \mathbb{R}^{p}$
(2) Recall $(\operatorname{col} A)^{\perp}=\left(\text { row } A^{\top}\right)^{\perp}=\operatorname{nul} A^{\top}$

$$
\leftrightarrows A^{\top}(v-p)=0
$$

Then WTFind $\hat{x}$ st. $A^{\top}(v-A \hat{x})=\overrightarrow{0}$
$A^{\top} v=A^{\top} A \hat{x}=\overrightarrow{0}$
$A^{\top} v=A^{\top} A \hat{x}$
WLOG suppose cols of $A$ lin index. (else we can throw out cols without changing col A)
Then $A^{\top} A$ invertible.

$$
\begin{gathered}
\Rightarrow\left(A^{\top} A\right)^{-1} A^{\top} v=\left(A^{\top} A\right)^{-1} A^{\top} A \hat{x} \\
\hat{x}=\left(A^{\top} A\right)^{-1} A^{\top} v
\end{gathered}
$$

So

$$
\operatorname{proj}_{c o l A} v=A \hat{x}=A\left(A^{\top} A\right)^{-1} A^{\top} v
$$

Then, to project $v \in V$ into some subspace $W$, fund matrix whose col space is $W$ by taking basis of $W$ and stacking horizontally. Then do the above work

Thu Orthogonal Decomposition Theorem.
If $w$ is subspace of $\mathbb{R}^{n}$ and $v \in \mathbb{R}^{n}$, then there are unique $w \in W$ and $u \in W^{\perp}$ s.t. $u+w=v$

Proof ( $\exists$ ) Let $w=$ projw $v$

$$
u=v-\operatorname{proj} w v
$$

Then $w \in W, u \in W^{\perp}$ by def and

$$
w+u=v
$$

(!) Suppose $w^{\prime} \in W, u \in W^{\perp}$ s.t. $w^{\prime}+u^{\prime}=v$
Then

$$
\begin{aligned}
& w+u=w^{\prime}+u^{\prime} . \\
& w-w^{\prime} \\
& \vec{x} \in W
\end{aligned} \underbrace{u^{\prime}-u}_{\vec{x} \in w^{\prime}} \text { Let } \vec{x}=w-w^{\prime}
$$

Then $\vec{x}=\overrightarrow{0}$. So $w=w^{\prime}, u=u^{\prime}$


