Lec 28

Orthonormal basis

Notice Let V be I.P.S. with some orthonormal basis $B = \{u_1, ..., u_n\}$ Let $v, w \in V$, then $v = a_1u_1 + \dots + a_nu_n$ } unique linear combo $w = b_1w_1 + \dots + b_nw_n$ Then $\langle v, w \rangle = a_1b_1 + \dots + a_nb_n$ $\langle v, v \rangle = a_1^2 + \dots + a_n^2 = ||v||^2$ We get dot product like behaviours We call $\begin{bmatrix} a_1 \\ a_n \end{bmatrix}$ the <u>coordinate vec</u> for v w.r.t. B

Orthogonal Projections

Let $u \in \mathbb{R}^n$, $u \neq \vec{o}$, l = span(n), $v \in \mathbb{R}^n$

-> Want to be able to project onto any subspace

Let Anxp, project VERP onto COLA.

We must have $\bigcirc p \in colA$, $\oslash v - p \in (colA)^{\perp}$ Notice $colA = \{A \times | \times \in \mathbb{R}^{p}\}$. Then $\bigcirc p = A\hat{x}$ f.s. $\hat{x} \in \mathbb{R}^{p}$ $\textcircled{O} \operatorname{Recall}(colA)^{\perp} = (row A^{T})^{\perp} = nulA^{T}$ $\textcircled{V} A^{T}(v - p) = \breve{O}$ Then WTFind \hat{x} st. $A^{T}(v - A\hat{x}) = \vec{0}$ $A^{T}v - A^{T}A\hat{x} = \vec{0}$ $A^{T}v = A^{T}A\hat{x}$ WLOG suppose colds of A lin indep. (else we can throw out colds without changing col A) Then $A^{T}A$ invertible. $\Rightarrow (A^{T}A)^{-1}A^{T}v = (A^{T}A)^{-1}A^{T}A\hat{x}$ $\hat{x} = (A^{T}A)^{-1}A^{T}v$ So $ProjiciA v = A\hat{x} = A(A^{T}A)^{-1}A^{T}v$

Then, to project $v \in V$ into some subspace W, find matrix whose coll space is W by taking basis of W and stacking horizontally. Then do the above work

Thus Orthogonal Decomposition Theorem. If W is subspace of \mathbb{R}^n and $V \in \mathbb{R}^n$, then there are unique $w \in W$ and $u \in W^\perp$ st. u + w = vProof (3) Let $w = \operatorname{projw} V$ $u = v - \operatorname{projw} V$ Then $w \in W$, $u \in W^\perp$ by def and w + u = v(!) Suppose $w' \in W$, $u \in W^\perp$ st. w' + u' = vThen w + u = w' + u'. w - w' = u' - u Let $\overline{x} = w - w'$ $\overline{x} \in W$ $\overline{x} \in W^\perp$ Then $\overline{x} = \overline{0}$. So w = w', u = u'